

Fraunhofer Institut

Institut Toxikologie und Experimentelle Medizin

Final Report

Range Finding Testing for a Comb ined Repeated Dose Toxicity Study with the Reproduction/ D evelopmental Toxicity Screening Test and Mammalian Ery throcyte Micronucleus Test via Inhalation with Roofing Asphalt Fume Condensate

Fraunhofer ITEM Study No. 02N07533

Number 1 of 2 Originals

Test Facility: Fraunhofer Institute of Toxicology and Experimental Medicine Nikolai-Fuchs-Str.1 D-30625 Hannover, Germany

Executive Director:

Sponsor: American Petroleum Institute 1220 L Street NW Washington, DC 20005 USA

This final report consists of 126 pages

Contents

1	Sta	tement of Study Director	4
2		oduction	
	2.1	Objectives of the Study	5
	2.2	Guidelines for Conduct of the Study	
	2.3	Selection of Animal Species	
	2.4	Dates	
	2.5	Study Staff	
	2.6	Dose Level Selection	
	2.7	Duration of Study	
	2.8	Test Item	
	2.8.		
3	Tes	t System	
	3.1	Animal Model	
	3.2	Acclimation and Mating of Animals	
	3.3	Animal Identification	
	3.4	Housing and Maintenance	
4		cedures	
-	4.1	Experimental Design and Randomization	
	4.2	Inhalation Exposure	
	4.3	Aerosol Generation	
	4.4	Inhalation Units and Dilution	
	4.5	Measurement of the Exposure Atmosphere	
	4.6	Additional Chamber Measurements	
	4.7	Daily and Weekly Observations	
	4.8	Post Mortem Observations	
	4.8.		
	4.8.	The state of the s	
5		a Collection	
6		tistical Evaluation	
7		rage and Retention of Materials	
8		sults	
-	8.1	Stability of the Test Item	
	8.2	Exposure Atmosphere	
	8.3	In-Life Observations	
	8.3.		
			.16
	8.3.		
	8.3.		
	8.4	Post Mortem Observations	
	8.4.		
	8.4.		
	8.4.		
	8.4.		
	8.4.	1 9	
9	-	nmary and Conclusions	
10		eferences	
11		ables and Figures	
- '			

Fraunhofer ITEM Final Report 02N07533 page 3 of 126
Range Finding Testing for a Combined Repeated Dose Toxicity Study with the Reproduction/ Developmental Toxicity Screening
Test and Mammalian Erythrocyte Micronucleus Test via Inhalation with Roofing Asphalt Fume Condensate

Table 2:	Particle Size	22
Table 3:	Light and Noise Levels	
Table 4:	Body Weight	23
Table 5:	Body Weight Gain	25
Table 6:	Food Consumption	27
Table 7:	Macroscopic Findings	29
Table 8:	Organ Weights	30
Table 9:	Organ Weight/Body Weight Ratios	32
Table 10:	Summary of Cesarean Section Data	
Table 11:	Summary of Gravid Uterine Weight and Net Body Weight Change	37
Table 12:	Histopathological Findings	
Table 13:	Histopathological Findings (with score expansion)	41
Table 14:	Blood Formation	46
(Note: Figure 1	to 3 are in the text part)	
Figure 1:	Aerosol generator	10
Figure 2:	Scheme of the inhalation setup	
Figure 3:	Partial view of the direct-flow nose-only inhalation exposure system	
Appendices		
Appendix A:	Particle Size Distribution	47
Appendix B:	Clinical Observations Individual Data	
Appendix C:	Body Weight Individual Data	59
Appendix D:	Food Consumption Individual Data	
Appendix E:	Organ Weights Individual Data	
Appendix F:	Organ Weight Ratio/Body Weight Individual Data	86
Appendix G:	Caesarean Section Individual Data	
Appendix H	Gravid Uterine Weight and Net Body Weight Change Individual Data	100
Appendix I:	Histopathology Individual Data	
Appendix K:	Blood Formation Individual Data	123

1 Statement of Study Director

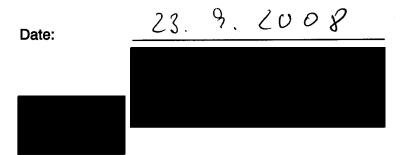
Study No.:

02N07533

Test Substance:

Roofing Asphalt Fume Condensate

Title: Range Finding Testing for a Combined Repeated Dose Toxicity Study with the


Reproduction/ Developmental Toxicity Screening Test and Mammalian Erythocyte

Micronucleus Test via Inhalation with Roofing Asphalt Fume Condensate

This nonclinical health study was not conducted in compliance with the principles of GLP but in the spirit of GLP.

The study followed the regulations of the German animal protection law (Tierschutzgesetz of May 18, 2006).

I accept the responsibility for the validity of the study.

2 Introduction

2.1 Objectives of the Study

The objective of this dose range finding study was to evaluate the possible toxicity of Roofing Asphalt Fume Condensate after inhalation in rats and to determine the dose levels for the following "Combined Repeated Dose Toxicity Study with the Reproduction/ Developmental Toxicity Screening Test and Mammalian Erythrocyte Micronucleus Test via Inhalation with Roofing Asphalt Fume Condensate".

2.2 Guidelines for Conduct of the Study

This was a non GLP study. However, the principles of Good Laboratory Practice were taken into consideration as far as possible (German Chemicals Law, Appendix 1, June 28, 2002) and the study was conducted in the spirit of Good Laboratory Practice. The study followed the regulations of the German animal protection law (Tierschutzgesetz of May 18, 2006).

2.3 Selection of Animal Species

For toxicity studies, rats are often used because of the economy in their use, the information available on physiology and development, and the susceptibility to different chemicals. Rats of the same strain were often used for this type of study in the laboratories of Fraunhofer ITEM.

2.4 Dates

Study initiation date: February 6, 2008

Experimental start date: 15.02.2008

(start of inhalation)

Experimental completion date: April 9, 2008

Study completion date September 23, 2008

2.5	Study Staff	

Study Director:	
Deputy Study Director:	
Laboratory Animal Veterinarian:	
Aerosol Physicist:	
Chemist:	
Scientist responsible for Micronucleus Pretest:	
Statistician:	

2.6 Dose Level Selection

The use of three doses was appropriate since no information on the effects of the test item on the investigated endpoints is available. 1000 mg/m³ THC can be used as a limit test dose (see also OPPTS 870.3465). The dose levels were based on the assumption that the limit dose is expected to cause some mild parental toxicity. Therefore a higher dose does not seemed to be necessary. The other dosages were selected applying a stagger of about 3. Selected dose levels were: 0, 100, 300, or 1000 mg/m³.

2.7 Duration of Study

The animals were exposed to the test item or clean air by nose-only inhalation daily, 6 hours per day, 7 days per week:

Males were exposed for 14 days.

Pregnant females: were exposed from day 6 until and including day 20 of gestation.

2.8 Test Item

Roofing asphalt fume condensate.

Test item source and preparation:

Details on the roofing asphalt fume condensate used for the chamber trials are reported in the report "Collection, Validation and Generation of Asphalt Roofing Fumes for Reproductive/Developmental Toxicity Study", Heritage Research Group, 3 February 2006.

Identity and homogeneity of the test item:

API identification: Sample # 06-01 CASRN: 64742-93-4 Density: 0.8745 mg/l

Kinematic Viscosity: 8.3616 centi stokes at 100°F

Refractive Index: 1.4831 at 25°C Expiry Date: August 2020

Density, fluorescence, and refractive index of the test item were provided by the sponsor for each separate bottle filled with roofing asphalt fume condensate.

Sample identity was confirmed by determination of density and refractive index of the test item (see study 02N07532).

2.8.1 Safety Protection, Storage, Handling and Disposal

Safety precaution, storage and handling of the test substance will be done according to the TRGS 901 (Technische Regeln für Gefahrstoffe).

3 Test System

3.1 Animal Model

Wistar rats (Crl:WU), purchased from Charles River Deutschland, Sulzfeld, Germany, were used in this study. 20 males and 30 virgin females (approx. 7 weeks at delivery) were acclimatized for approx. 3 weeks prior to study start in the animal room.

The study commenced with 20 male and 22 sperm positive female rats which were randomly assigned to one of the clean air control (5) or test item exposed groups (5 to the low dose and 6 each to the mid and high dose).

3.2 Acclimation and Mating of Animals

Prior to the start of the exposure period, the following procedures were completed for all animals: Acclimation to the Fraunhofer ITEM laboratory conditions for approx. 3 weeks. Starting in the first week of the acclimation period, a training program was performed to acclimatize the animals to the exposure tubes for increasing periods of time. During the last week of acclimation, study males and females were mated overnight and the day of finding vaginal plugs and/or sperm in vaginal smears was considered day 0 post conceptionem (p.c.). During the whole acclimation period, clinical observations were made once a day. Animals were accepted for the study only if they were in a good health condition.

3.3 Animal Identification

A unique individual identification number was assigned to each animal in the study, the cages will be labeled with this number and the animals will be identified by ear tattooing. All data collected from an animal were filed under that number.

3.4 Housing and Maintenance

Animals were individually housed in Makrolon[®] Type III cages. Absorbent softwood was used as bedding material in the cages (ssniff 3/4, Ssniff GmbH, Soest, Germany). Drinking water from the Hannover city water supplier was offered fresh weekly, in Makrolon[®] bottles (approximately 300 ml), ad libitum. Food was offered ad libitum fresh weekly. The diet used (ssniff R/M-H) was supplied by ssniff GmbH, Soest, Germany.

Temperature and relative humidity were recorded continuously. The temperature in the animal room was set at 22 ± 2 °C and the relative humidity at 30 - 70%. The animal room lighting was a 12-hour light/dark cycle controlled by an automatic timing device.

4 Procedures

4.1 Experimental Design and Randomization

Animals were randomized to groups as mentioned below based on body weight before study start using a computer program (PROVANTIS), excluding any statistically significant differences in body weight between the groups (males) or after successful mating based on a randomization list (females).

Animals were exposed according to the following scheme:

Group	No. of A	Animals	Target	Animal Numbers		
	Males	sperm positive females	concentration mg/m³ THC*	Males	females	
1 Clean Air Control	5	5	-	1101-1105	1201-1205	
2 Low Dose	5	5	100	2101-2105	2201-2205	
3 Medium Dose	5	6	300	3101-3105	3201-3206	
4 High Dose	5	6	1000	4101-4105	4201-4206	

^{*} Total hydrocarbons

4.2 Inhalation Exposure

Technical setup was completed in the study "Chamber Trials for the Combined Repeated Dose Toxicity Study with the Reproduction/ Developmental Toxicity Screening Test and Mammalian Erythrocyte Micronucleus Test via Inhalation with Roofing Asphalt Fume

Condensate (Fraunhofer ITEM Study No.: 02N07532)" and described in detail in the study report.

Exposures were conducted in animal room T1.033. The rats were exposed to asphalt fumes in a direct flow nose-only inhalation exposure system. In this system the fume was supplied to each animal individually, and exhaled air was exhausted immediately. The rats were placed around the exposure cylinder in tapered acrylic glass tubes with adjustable backstops. The whole exposure unit was placed under a laboratory hood.

4.3 Aerosol Generation

The method developed by Koch (1993) and described in more detail by Pohlmann et al. (2006) used for regeneration of asphalt fume basically uses a free jet to recondense hot vapor in a stream of cool air. Since in this system heat and mass transfer are mainly determined by the free jet, the particle generation process is very robust, not sensitive to external factors, and yields a stable fume in respect to its physical and chemical composition.

The asphalt fume test atmosphere was generated using the free jet principle by means of a laboratory setup developed at the Fraunhofer ITEM. In this apparatus (Figure), liquid asphalt fume condensate was evaporated and recondenses on a large number of condensation nuclei also generated from the condensate by the apparatus. This led to a highly dispersed aerosol phase in equilibrium with the corresponding vapor phase.

In the free jet evaporation-condensation generator, a well-defined mass flux of vaporized material was issued together with a carrier (nitrogen) at high velocity through a nozzle into a stream of slowly flowing cool air. An expanding turbulent jet was formed, as a result of the surrounding air mixing with the vapor stream. The asphalt vapor was cooled and diluted downstream of the nozzle, as the jet developed. The initial vapor phase contained very fine seed particles, originating from the vapor generation process. The vapor was generated by first nebulizing the condensate, using a pneumatic nebulization nozzle, and subsequently evaporating the droplets in a heated evaporation tube. The seed particles resulted from lower volatility constituents in the condensate. Due to the nonlinear temperature behavior of the saturation concentration, the saturation ratio, S, goes through a maximum as a function of distance, x, from the nozzle. Depending on the temperature of the surrounding air in the generator and the mass flux of the vaporized material, supersaturation (S > 1) of the vapor was eventually achieved, and led to formation and growth of liquid aerosol droplets by condensation of the vapor phase on the seed particles.

The setup of the fume generator is shown in Figure 1. A peristaltic pump, driven by a stepping motor, maintained the pump feed rate of the asphalt fume condensate. For the nose-only system used in the inhalation studies and the concentrations envisaged, the feed rate had to be of the order of 4.5 ml/h. The condensate was pumped via a stainless steel tube directly into the pneumatic dispersion nozzle. This nozzle was operated with heated nitrogen (160 °C) at a flow rate of 5 l/min and generates droplets with a mean diameter of about 6 μ m. The droplets were fed directly into a tube heated at approx. 220 °C, where they evaporated. The vapor was then issued through the nozzle and was recondensed in the condensation section as described, by mixing with cool air.

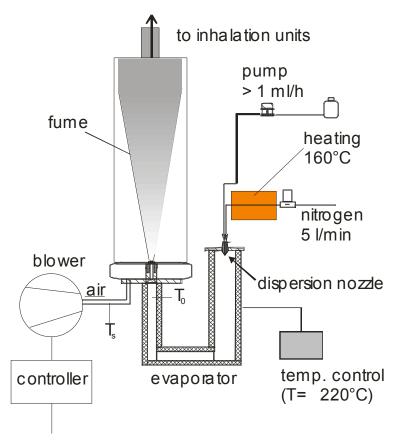
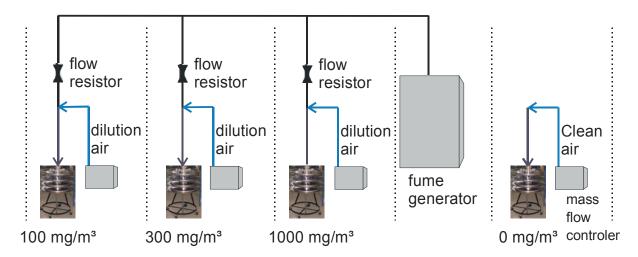



Figure 1: Aerosol generator. The red nitrogen heater has been added compared to the original setup described in Pohlmann et al., 2006.

4.4 Inhalation Units and Dilution

From the generator, the fume was directed through stainless steel tubes to the different inhalation units (Figure 2). Flow resistors controlled the flow of asphalt fume to each inhalation unit. The flow rate through these resistors was maintained by keeping a constant pressure difference between the inhalation units and the generator by controlling the flow rate of the cooling air in the generator. The final concentrations were achieved by mixing the asphalt fume with dilution air, regulated by mass flow controllers. The whole inhalation system was microprocessor-controlled and supervised by a central computer.

Figure 2: Scheme of the inhalation setup. Flow resistors control the flow rate of asphalt fume from the generator into the inhalation units.

The exposure to asphalt fume took place in a direct-flow nose-only inhalation exposure systems as shown in Figure 3. These inhalation exposure units were placed in closed laboratory hoods that are maintained at a constant pressure. Within each unit, fumes were supplied to each animal individually, and the exhaled air was exhausted immediately. Animals were placed around the exposure cylinder in tapered acrylic glass tubes with adjustable backstops. Target concentrations at the different inhalation units were 0, 100, 300 and 1000 mg/m³.

Figure 3: Partial view of the direct-flow nose-only inhalation exposure system (inhalation unit). The picture on the left shows the upper part of the unit with the fume inlet installed, the inhalation ports and, as an example, one acrylic glass tube installed. The picture on the right shows a top view of the inhalation unit with the fume inlet removed, providing a view of the inner inlet cylinder with the stainless steel tubes directed to the inhalation ports as well as the outer cylinder that serves as exhaust drain.

4.5 Measurement of the Exposure Atmosphere

The temperature and the relative humidity in the fume supply to the inhalation units were measured. Data on temperature and relative humidity were collected by a computer. 10-minute average values were stored for documentation.

The fume concentration was determined by sampling from the nose only units using a combination of a glass fiber filter and a XAD absorption tube with a sample flow rate of approx. 2 l/min. An average of two samples a week was taken. The material collected on the filter and the XAD tube was extracted and analyzed separately by IR spectroscopy according to BIA guideline #6305. The concentrations were given in mg Total Hydrocarbon (THC)/m³ aerosol and vapor phase.

For the comparison of the asphalt fume concentration determined according to BIA method to the absolute asphalt fume concentration, samples of defined concentrations of asphalt condensate were analyzed using the BIA method. In the report both figures for the THC concentrations are presented. Samples were taken from each exposure unit. Parallel to the determination of THC the UV fluorescence in mg/kg as diphenyl anthracene (DPA) was measured in the high dose group. For continuous monitoring of the total hydrocarbon exposure concentration aerosol photometers as described in the report to the Fraunhofer ITEM Study No. 02N07532 were used. Periodical check and optionally recalculation of the photometer sensitivity during the inhalation study using the results of chemical analyses (TCH/m³) were carried out. Particle size distributions were determined once for each concentration using a scanning mobility particle sizer (SMPS, TSI - Inc.) which will give number size distribution in a size range of about 7 - 300 nm.

4.6 Additional Chamber Measurements

Light and noise levels in the exposure room were measured pretest, at the beginning, in the middle, and at the end of the exposure period. The inhalation atmosphere was a composition of clean air from the animal house air conditioning system with less than 1% (v/v) asphalt fume added. Since the flow in the inhalation units was well controlled oxygen level was guaranteed not to be below 19% (v/v). Therefore oxygen measurements were considered not to be necessary.

4.7 Daily and Weekly Observations

Animals were inspected at least once daily. Once per week, all animals were inspected outside their home cages. The results of these examinations were documented.

Individual body weight of the animals was recorded to the nearest 0.1 g.

Males: once weekly

Sperm positive females: on day 0, 4, 6, 7, 10, 14, 17 and 21 p.c.

Individual food consumption in the animals was recorded to the nearest 0.1 g by the difference between initial and remaining food.

Males: once weekly

Sperm positive females: on day 0, 4, 6, 7, 10, 14, 17 and 21 p.c.

4.8 Post Mortem Observations

The animals were sacrificed by C0₂ overdose and subsequent exsanguination. Necropsy was performed under the supervision of a veterinarian or pathologist.

Males: after 14 day of exposure Pregnant females: day 21 of gestation

4.8.1 Gross Pathology and Histopathology

Necropsy was performed in all animals as scheduled above. The following organs and tissues were collected from each rat and fixed in 10% neutral buffered formalin: nasal and paranasal cavities, larynx, pharynx, trachea, and lungs.

In addition to the terminal body weight, selected organs listed below were weighed (paired organs separately). All animals were included in organ weight determination except non-pregnant females.

Liver	
Kidneys	
Thymus	
Testes or Ovaries	

Females: The number of implantation sites per dam was determined, using ammonium sulphide staining where no implantations were macroscopically visible. The number of corpora lutea, live/dead fetuses and resorptions as well as uterine weight were determined. Fetuses were weighed individually, sexed and examined for external abnormalities.

Histopathological examination of the respiratory tract was conducted in all 40 rats. Trimming was done according to Ruehl-Fehlert et al. 2003, Kittel et al. 2004, Morawietz et al. 2004. Bones were decalcified prior to embedding.

Tissues for microscopic examination were fixed for at least one week in 10% neutral buffered formalin, embedded in paraffin, sectioned at 3 - 4 μ m, mounted on slides and stained with hematoxylin and eosin.

The slides were examined by light microscopy and the observations were recorded with an on-line computer program (PLACES 2000.1).

4.8.2 Blood Formation

A pre-requisite for a valid mammalian erythrocyte micronucleus test is an appropriate high dose, near MTD (Maximum Tolerated Dose, a dose causing marked toxicity but no mortality), and the likelihood that the test substance or its metabolites reach the target tissue. As MTD level exposure would be incompatible with a reproduction/developmental toxicity test, the highest dose used has to be defined as a dose that produces some indication of toxicity in the bone marrow. For that reason, bone marrow smears of the clean air control animals and only the high dose animals were prepared and the ratio of immature erythrocytes among total erythrocytes was determined.

At the time of necropsy one femur of each rat was collected and cleaned of the surrounding muscle tissue. Ends of the femur were cut off. The bone marrow of each animal was washed out with foetal calf serum and transferred into a clean tube. The bone marrow in the tube was pulled gently up and down until a fine cell suspension was observed in the foetal calf serum. Cellulose columns (according to Sun et al., 1999) were used to remove nucleated cells and thus to avoid artifacts, arising from granules of damaged granulocytes, which stain similar to micronuclei. Cellulose columns were prepared from equal amounts of □-cellulose and cellulose type 50350, suspended in Hank's Balanced Salt Solution and filled into Poly-Prep Columns (BIO-RAD, München, Germany). The suspended bone marrow was carefully loaded onto the cellulose columns and allowed to drain into 15 ml centrifuge tubes. The bone marrow was then centrifuged and most of the supernatant was discarded. The remaining cell pellet was carefully re-suspended in a very small volume of foetal calf serum, resulting in about 2 drops of bone marrow cell suspension per animal. From this suspension two smears (one for evaluation and one spare) were prepared on defatted slides. The smears were airdried for 24 h and stained according to Pappenheim with May-Grünwald- and Giemsasolution. The slides were coded prior to microscopic analysis and examined by light microscopy under 630-1000 x magnification. The ratio of polychromatic to normochromatic erythrocytes was calculated by counting the number of polychromatic erythrocytes per at least 200 red blood cells.

5 Data Collection

Clinical observations, body weights, food consumption, mating and pregnancy data, sacrifice data, organ weights and general study comments were recorded as computer output (Toxicology Analysis System Customized, version 0, PROVANTIS) and/or on special data forms. Necropsy data and organ weights were recorded on individual loose leaf sheets (one or more per animal) or as direct instrument or computer output.

6 Statistical Evaluation

Statistical comparison of groups was performed at the level of α =0.05. Body weights, food consumption, and organ weight data were analyzed using analysis of variance. If the group means differ significantly according to this method, the means of the treatment groups was compared with the mean of the control group 1 using Dunnett's modification of the t-test. Kruskall-Wallis ANOVA and Mann-Whitney U-test were applied in the case of non-homogenous data.

Qualitative data were analyzed using the two-tailed FISHER test with Bonferroni correction

or Chi-square test.

Data from non-pregnant females were excluded from the statistical analysis.

7 Storage and Retention of Materials

One original copy of the study plan, one original copy of the final report, all raw data, and all other material (and data) listed in the study plan and a sample of the test item will be stored at least for the period of time required by the GLP principles as laid down in the German regulations (15 years for data). The sponsor has to inform Fraunhofer ITEM if further archiving is required.

8 Results

8.1 Stability of the Test Item

The stability of the test item was measured at three time points. No degradation could be observed.

Date	Refractive index $n_D(25)$	Fluorescense as DPA equivalent (mg/kg)
18.02.2008	1.483	323
25.02.2008	1.483	321
28.02.2008	1.483	323

8.2 Exposure Atmosphere

The exposure conditions are shown in **Tables 1 -3**. Graphs of the particle size distribution are shown in **Appendix A**.

The actual concentrations of the bitumen fume measured in the exposure atmosphere were 103.5 mg/m³, 299.6 mg/³ and 1116 mg/m³ THC for the low, mid and high dose group. The number modal diameters of the particles measured with the SMPS where 230,2, 199.4, and 190.0 nm for the low, mid and high dose group. Here modal diameter instead of the median diameter is reported since the measurement range of the instrument used does not cover the whole size distribution and in this case the modal diameter best reflects the average particle size of the complete distribution.

8.3 In-Life Observations

8.3.1 Clinical Observations

Individual data are Given in Appendix B.

No adverse compound-related clinical signs were observed in rats during the course of the study.

8.3.2 Mortality

No mortality occurred during the course of the study.

8.3.3 Body Weight

The data for body weight and body weight gain in rats are summarized in **Tables 4**, **5 and 11**. Individual data are given in **Appendix C**.

In males, the body weight gain was significantly reduced in the 300 mg/m³ and 1000 mg/m³ THC groups, and in females in the 1000 m/m³ THC group. However, net body weight gain change was dose dependently decreased in all exposed groups, and this was determined to be statistically significant in the 300 mg/m³ and 1000 mg/mg³ THC groups.

8.3.4 Food Consumption

The data for food consumption are presented in **Table 6**. Individual data are given in **Appendix D.**

Food consumption was dose dependently decreased in all exposed groups, and this was determined to be statistically significant in the 300 mg/m³ and 1000 mg/mg³ THC groups in females, and in the 1000 mg/mg³ THC group in males.

8.4 Post Mortem Observations

8.4.1 Gross Pathology

Macroscopic findings are summarized in **Table 7**.

No compound-related effects were observed during necropsy.

8.4.2 Organ Weights

Organ weight data are given in **Tables 8 - 9** with individual data presented in **Appendices E**, **F**.

The only test item induced effect was a significant decrease in absolute and relative thymus weight in males and females of the 1000 mg/m³ THC groups.

Other sporadically observed differences in absolute organ weights are considered a

8.4.3 Caesarean Section

secondary consequence of the decreased body weights.

Data of the caesarean section are given in **Tables 10 and 11**, individual data are presented in **Appendices G and H.**

The only test item induced effect was a dramatic decrease in fetal body weight in the 1000 mg/m³ THC group.

None of the other investigated endpoints was affected by the test item exposure.

8.4.4 Histopathological Examination

Histopathological findings are summarized in **Tables 12 and 13** with individual data presented in **Appendix I.**

Test-substance related findings

Nasal and Paranasal Cavities

Several significant changes were observed in the nasal and paranasal cavities from rats of the THC exposure groups.

(Multi)focal mucous (goblet) cell hyperplasia was diagnosed dose-dependently in the THC exposure groups only. In males, the incidences were 3/5 (very slight), 5/5 (2/5 very slight, 3/5 slight) and 5/5 (3/5 slight, 2/5 moderate) in the 100, 300 and 1000 mg/m³ THC groups, respectively, whereas 2/5 (very slight), 6/6 (1/6 very slight, 5/6 slight) and 6/6 (3/6 slight, 3/6 moderate) females of the respective groups showed this change. In the clean air control group, no occurrence of this finding was observed. Adaptive mucous (goblet) cell hyperplasia affected the respiratory epithelial lining of the nasal airways as well as the submucosal nasal glands.

Other exposure-related findings (no occurrence in the control group) included basal-cell hyperplasia of the respiratory or olfactory epithelium and atrophy of the olfactory epithelium. Three of 5 males of the 100 mg/m³ THC group and one male and one female of the 300 and one male of the 1000 mg/m³ THC groups, respectively, showed mainly very slight (minimal) basal-cell hyperplasia of the respiratory epithelium. In addition, a single female of the 1000 mg/m³ THC group revealed multifocal very slight basal-cell hyperplasia of the olfactory epithelium.

Multifocal very slight atrophy of the olfactory epithelium was observed in 2/5 and 3/6 males and females, respectively, of the 1000 mg/m³ THC group.

(Multi)focal very slight to moderate mucosal inflammatory cell infiltration, mainly of the respiratory epithelium in levels 1 and 2 of the 4 nasal cavity sections was observed in 0/5 to 4/5 males and females per group, including the control group. Although no statistically

significant differences between the control and exposure groups were observed, this change is considered to be at least partly related to the THC exposure, since the highest incidences or severity grades were observed in the 300 and 1000 mg/m³ THC groups.

Larynx

The only finding which could be related to THC exposure was focal very slight mucous (goblet) cell hyperplasia of the respiratory epithelial lining in a single male of the 1000 mg/m³ THC group.

Trachea

Exposure-related (multi)focal very slight mucous (goblet) cell hyperplasia of the respiratory epithelium was seen in a single male of the 300 mg/m³ THC group as well as in 3/5 and 2/6 males and females, respectively, of the 1000 mg/m³ THC exposure group.

Lunas

(Multi)focal very slight to slight alveolar histiocytosis (alveolar accumulation of macrophages) was observed dose-dependently in 3/5 (very slight) males of the 300 mg/m³ THC group and in 5/5 (2/5 very slight, 3/5 slight) males of the 1000 mg/m³ THC group, whereas 2/5 (very slight), 5/6 (very slight) and 6/6 (1/6 very slight, 5/6 slight) females of the 100, 300 and 1000 mg/m³ THC groups, respectively, showed this change. In the clean air control group, alveolar histiocytosis was not observed.

(Multi)focal interstitial mononuclear or (mixed) inflammatory cell infiltration occurred in a single male control animal (very slight), in 2/5 (very slight) and 4/5 (2/5 very slight, 2/5 slight) males as well as in 2/6 (very slight) and 6/6 (4/6 very slight, 2/6 slight) female rats of the 300 and 1000 mg/m³ THC exposure groups, respectively. In addition, 1/5 and 5/5 males of the 300 and 1000 mg/m³ THC groups, respectively, and 6/6 females of the high-dose THC group showed test-substance related (multi)focal very slight to slight alveolar inflammatory cell infiltration. This finding was also observed in a single male control animal and related to spontaneous focal alveolar haemorrhage.

As a further test substance-related finding, 2/5 males and 4/6 females of the 1000 mg/m³ THC group developed (multi)focal very slight bronchiolo-alveolar hyperplasia of the bronchiolar type (alveolar bronchiolization). This adaptive type of hyperplasia describes the presence of bronchiolar epithelium within alveolar ducts and adjacent alveoli.

Other findings (not test substance-related)

A variety of sporadic findings were observed in single animals of different groups. These findings were considered to be unrelated to test-substance exposure and included focal mucosal mineralization and submucosal cyst formation in the nasal cavity, focal submucosal foreign-body granuloma and focal epithelial alteration due to aspiration or inspissation of plant fibres in the larynx, focal neuroendocrine cell hyperplasia, focal interstitial fibrosis and congestion in the lungs and lymphoid hyperplasia in the lung-associated lymph nodes (LALN). No pathological changes at all were observed in the (laryngo-)pharynx.

8.4.5 Blood Formation

Results are summarized in **Table 14** with individual data shon in **Appendix K**.

For determination of bone marrow toxicity of inhaled roofing asphalt fume condensate (RAFC), the proportion of PCE (immature) among 400 RBC (PCE and NCE) was determined and the ratio of PCE to NCE was calculated. Bone marrow toxicity was analyzed in 5 males and 5 females (negative control and 1000 mg/m³) or in 4 females only (300 mg/m³). An additional female of the 1000 mg/m³ group (Animal 4206) was excluded from statistical analysis due to an abnormally high number of PCE exceeding the values of the negative control by a factor of about 4.

In male animals there was clear tendency towards impairment of blood formation by repeated exposure to 1000 mg/m 3 RAFC. The mean number of PCE/400 RBC was reduced from 133 ± 11.4 to 120 ± 13.2 and the mean ratio of PCE/NCE from 0.50 ± 0.063 to 0.43 ±0.069, but reduction did not reach statistical significance. In female animals there was statistically significant reduction in the mean number of PCE/400 RBC from 142 ± 12.1 to 110 ± 17.6 and of the PCE/NCE ratio from 0.55 ± 0.077 to 0.38 ± 0.085 by exposure to 1000 mg/m 3 RAFC. Exposure to 300 mg/m 3 RAFC only slightly diminished the number of PCE, pointing to a concentration-dependent effect.

9 Summary and Conclusions

The objective of this dose range finding study was to evaluate the possible toxicity of Roofing Asphalt Fume Condensate after inhalation in rats and to determine the dose levels for the following "Combined Repeated Dose Toxicity Study with the Reproduction/ Developmental Toxicity Screening Test and Mammalian Erythrocyte Micronucleus Test via Inhalation with Roofing Asphalt Fume Condensate".

Five male and 5 - 6 sperm positive female Wistar (WU) rats were exposed for 6 hrs/day, 7 days/week over a period of 14 days for males and from day 6 to 20 of pregnant females to clean air, or 103.5 mg/m³, 299.6 mg/³ and 1116 mg/m³ THC for the low, mid and high dose group. The number modal diameter of the particles measured with the SMPS where 230,2, 199.4, and 190.0 nm for the low, mid and high dose group.

In males, the body weight gain was significantly reduced in the 300 mg/m³ and 1000 mg/m³ THC groups, and in females in the 1000 m/m³ THC group. However, net body weight gain change was dose dependently decreased in all exposed groups, being statistically significant in the 300 mg/m³ and 1000 mg/mg³ THC groups.

Food consumption was dose dependently decreased in all exposed groups, being statistically significant in the 300 mg/m³ and 1000 mg/mg³ THC groups in females, and in the 1000 mg/mg³ THC group in males.

The only test item induced difference on organ weights from the control was a significant decrease in absolute and relative thymus weight in males and females of the 1000 mg/m³

THC groups.

Test-substance related histopathological findings consisted of minimal to moderate mucous (goblet) cell hyperplasia in the nasal cavity (dose dependent), the larynx and trachea. Minimal basal cell hyperplasia, mainly of the respiratory epithelium, minimal atrophy of the olfactory epithelium and minimal to moderate mucosal inflammatory cell infiltration were additional test-substance related findings in the nasal cavity. In the lungs, minimal to mild alveolar accumulation of macrophages and interstitial or alveolar inflammatory cell infiltration as well as minimal bronchiolo-alveolar hyperplasia were dose-dependent changes which could be related to the test substance.

The only test item induced effect on caesarean section data was a dramatic decrease in fetal body weight in the 1000 mg/m³ THC group.

The present data on blood formation indicate that the test substance RAFC or its metabolites reached the bone marrow compartment of rats after repeated inhalative exposure and that induction of micronuclei in bone marrow erythrocytes is thus an appropriate *in vivo* endpoint for determination of the genotoxic potential of RAFC.

Based on the above described results and according to the guideline OECD 422 ("23. The highest dose level should be chosen with the aim of inducing toxic effects but not death nor obvious suffering.") exposure concentrations of **30, 100, and 300 mg/m³ THC** are recommended for the main study.

10 References

Koch, W.; Windt, H.; Carrothers, T. Generation of submicron aerosols in a free turbulent jet, in Synthesis and measurement of ultrafine particles: Proceedings of the International Workshop on the Synthesis and Measurement of Ultrafine Particles, Delft: Delftse Universitaire Pers, 1993 S.51-59

Ruehl-Fehlert C., Kittel B., Morawietz G., Deslex P., Keenan C., Mahrt C.R., Nolte T., Robinson M., Stuart B.P., Deschl U. Revised guides for organ sampling and trimming in rats and mice--Part 1. A joint publication of the RITA and NACAD groups. Exp Toxicol Pathol. 2003; 55:91-106.

Kittel B., Ruehl-Fehlert C., Morawietz G., Klapwijk J., Elwell M.R., Lenz B., O'Sullivan M.G., Roth D.R., Wadsworth P.F. Revised guides for organ sampling and trimming in rats and mice--Part 2. A joint publication of the RITA and NACAD groups. Exp Toxicol Pathol. 2004;55:413-31.

Morawietz G., Ruehl-Fehlert C., Kittel B., Bube A., Keane K., Halm S., Heuser A., Hellmann J. Revised guides for organ sampling and trimming in rats and mice--Part 3. A joint publication of the RITA and NACAD groups. Exp Toxicol Pathol. 2004;55:433-49.

Pohlmann, G., A. Preiss, W. Koch, H. Kock, M. Elend, M. Raabe (2006), "Collection,

Validation and Generation of Asphalt Fumes for Inhalation Studies in Rats. Part 3: Regeneration of Asphalt Fumes, Inhalation Setup and Validation", Ann Occup Hyg., 50 (2006), Nr.8, S.813-819

11 Tables and Figures

Table 1: Exposure Conditions with Mean and Standard Deviation

	Control	100 mg/m³ THC	300 mg/m³ THC	1000 mg/m³ THC
Daily Exposure time (hrs)	6	6	6	6
Temperature (°C)	21.6 ± 0.3	21.9 ± 0.4	21.8 ± 0.3	22.1 ± 0.3
Humidity (% r. h.)	60.5 ± 1.9	53.8 ± 1.6	51.6 ± 2.1	45.8 ± 1.5
Air inflow (I/min)	35.0	34.1	40.8	37.7
Air outflow (I/min) ¹	30.9	29.9	34.7	33.7
THC (mg/m³) ² n=	0.09 ± 0.13 4	103.5 ± 4.1 4	299.6 ± 13.1 4	1116 ± 14.3 4
THC (mg/m³) ³ n=	- -	95.5 ± 8.2 21	279.9 ± 24.5 21	1052 ± 85.5 21
Fluorescense (mg/kg) ⁴	- -	- -	- -	276 ± 11 4

¹ generating a slight overpressure in the inhalation system

Table 2: Number Size Distribution

	Number concentration (1/cm³)	Modal Diameter* (nm)
100 mg/m ³	7.35E+05 ± 2.55E+04	230.2 ± 4.8
300 mg/m ³	5.77E+06 ± 1.15E+05	199.4 ± 8.4
1000 mg/m ³	2.86E+07 ± 3.07E+06	190.0 ± 4.0

^{*} Since the measurement range of the instrument used does not cover the whole size distribution the Modal Diameter, that is the diameter where the size distribution reaches it's maximum, was chosen to be reported instead of the Median Diameter

Table 3: Light and Noise Levels

	Control			100 mg/m³			300 mg/m³			1000 mg/m³						
	pre	start	mid	end	pre	start	mid	end	pre	start	mid	end	pre	start	mid	end
Llght lux	33.1	49.7	39.5	39.2	34.8	34.7	33.7	34.7	31.3	39.6	33.6	38.9	38.5	37.6	35.1	36.8
Noise dB	32.3	57.7	57.0	57.3	57.2	69.7	68.9	65.2	58.8	70.0	67.6	65.3	56.3	62.2	56.3	58.9

² from chemical analysis

³ from photometric measurements

⁴ Fluorescence as DPA equivalent

Table 4: Body Weight

RTA054-05/01 Provantis7 - Production Date: 06/03/08 12:57 Page: 1

Bodyweights - Intergroup Comparison of Bodyweights

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

------<u>------</u>

Bodyweight (g) - Identity (No Transformation)

Group	Sex		Day numbers 0	relative 7	to Start 11	Date 14
1	m	Mean S.D. N	271.24 17.52 5	285.12 19.29 5	296.68 22.08 5	304.48 24.28 5
2	m	Mean S.D. N	275.62 13.80 5	285.86 15.85 5	294.42 18.27 5	301.02 16.44 5
3	m	Mean S.D. N	281.50 28.92 5	279.68 33.40 5	285.48 36.13 5	291.86 37.53 5
4	m	Mean S.D. N	276.94 23.08 5	261.02 27.28 5	262.40 27.67 5	264.34 27.33 5

Statistics Test: Dunnett Test: * - 5% significance level; ** - 1% significance level;

n - Data not appropriate for statistical analysis;

n1 - This group has only one value;

Arithmetic Mean Values Presented

Group 1 - Control Clean air Group 2 - 100 mg/m3

Group 3 - 300 mg/m3

Table 4: Body Weight (cont'd)

RTA054-05/01 Provantis7 - Production Date: 08/04/08 11:17 Page: 1

Bodyweights - Intergroup Comparison of Bodyweights

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

 $\label{eq:bodyweight} \mbox{Bodyweight (g) - Identity (No Transformation)}$

					Day numbe	rs relativ	e to Start	Date		
Group	Sex		0	4	6	7	10	14	17	21
1	f	Mean S.D. N	181.22 4.78 5	194.78 5.47 5	202.78 7.58 5	206.06 7.63 5	215.06 8.81 5	227.86 10.32 5	249.30 14.34 5	284.28 26.78 5
2	f	Mean S.D. N	179.13 5.98 4	189.18 12.43 4	200.75 9.74 4	199.45 8.84 4	207.50 7.95 4	222.53 7.27 4	242.85 5.32 4	274.48 6.69 4
3	f	Mean S.D. N	182.37 5.93 6	195.57 9.96 6	202.83 9.78 6	202.85 9.18 6	208.85 7.50 6	218.47 8.20 6	237.88 6.01 6	270.20 10.44 6
4	f	Mean S.D. N	188.16 6.78 5	204.68 9.70 5	212.26 9.75 5	208.98 10.63 5	208.48 8.27 5	210.20* 8.68 5	222.80** 8.12 5	246.10** 10.28 5

Statistics Test: Dunnett Test: * - 5% significance level; ** - 1% significance level;

n - Data not appropriate for statistical analysis;

n1 - This group has only one value;

Arithmetic Mean Values Presented

Group 1 - Control Clean air Group 2 - 100 mg/m3

Group 3 - 300 mg/m3

Table 5: Body Weight Gain

RTA023-04/01 Provantis7 - Production Date: 06/03/08 12:57 Page: 1

Bodyweights - Intergroup Comparison of Bodyweight Gains

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

Body Weight Gain (g) - Transformation: Identity (No Transformation)

		Base		Day numbers	relative to	Start Date	Abs	%
Group	Sex	Weight Day O	From: To:	0 7	7 11	11 14	Gain 0 14	Gain 0 14
1	m	271.24 17.52 5	Mean S.D. N	13.88 5.31 5	11.56 4.64 5	7.80 2.49 5	33.24 9.32 5	12.18 3.14 5
2	m	275.62 13.80 5	Mean S.D. N	10.24 6.06 5	8.56 2.79 5	6.60 2.86 5	25.40 7.94 5	9.22 2.85 5
3	m	281.50 28.92 5	Mean S.D. N	-1.82** 6.12 5	5.80 4.14 5	6.38 2.24 5	10.36** 11.15 5	3.50** 3.60 5
4	m	276.94 23.08 5	Mean S.D. N	-15.92** 6.26 5	1.38** 4.59 5	1.94** 1.50 5	-12.60** 9.55 5	-4.64** 3.45 5

Abs Gain = absolute bodyweight gain between base period and end of the analysis period
% Gain = percentage bodyweight gain between base period and end of the analysis period
Statistics Test: Dunnett Test: * - 5% significance level;

** - 1% significance level;

Group 1 - Control Clean air Group 2 - 100 mg/m3

Group 3 - 300 mg/m3

Table 5: Body Weight Gain (cont'd)

RTA023-04/01 Provantis7 - Production Date: 08/04/08 11:18 Page: 1

Bodyweights - Intergroup Comparison of Bodyweight Gains

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

Body Weight Gain (g) - Transformation: Identity (No Transformation)

					Da	ay numbers	relative to	Start Date				
Group	Sex	Base Weight Day O	From: To:	0 4	4 6	6 7	7 10	10 14	14 17	17 21	Abs Gain O 21	% Gain 0 21
1	f	181.22 4.78 5	Mean S.D. N	13.56 2.49 5	8.00 3.77 5	3.28 0.81 5	9.00 1.49 5	12.80 2.92 5	21.44 6.25 5	34.98 14.15 5	103.06 25.14 5	56.83 13.51 5
2	f	179.13 5.98 4	Mean S.D. N	10.05 6.80 4	11.58 2.92 4	-1.30* 1.47 4	8.05 2.13 4	15.03 2.48 4	20.33 3.79 4	31.63 2.78 4	95.35 6.61 4	53.32 4.81 4
3	f	182.37 5.93 6	Mean S.D. N	13.20 4.68 6	7.27 2.08 6	0.02 2.07 6	6.00 3.29 6	9.62 3.22 6	19.42 3.87 6	32.32 8.35 6	87.83 10.66 6	48.26 6.43 6
4	f	188.16 6.78 5	Mean S.D. N	16.52 5.13 5	7.58 2.68 5	-3.28** 3.20 5	-0.50** 5.71 5	1.72** 2.93 5	12.60* 2.90 5	23.30 3.39 5	57.94** 6.43 5	30.80** 3.31 5

Abs Gain = absolute bodyweight gain between base period and end of the analysis period % Gain = percentage bodyweight gain between base period and end of the analysis period Statistics Test: Dunnett Test: * - 5% significance level; ** - 1% significance level;

Group 1 - Control Clean air Group 2 - 100 mg/m3

Group 3 - 300 mg/m3

Table 6: Food Consumption

RTA074-05/01 Provantis7 - Production Date: 06/03/08 12:59 Page: 1

Food Consumption - Intergroup Food Consumption by Animal

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

Day numbers relative to Start Date

		From:	0	7	11	Mean O	Total O
Group	Sex	To:	7	11	14	14	14
1	m	Mean S.D. N	19.75429 1.32570 5	19.93500 1.63980 5	20.85333 1.59871 5	20.18087 1.43620 5	280.58000 19.38342 5
2	m	Mean S.D. N	18.99429 1.83702 5	19.33000 2.07217 5	19.96667 1.82346 5	19.43032 1.90538 5	270.18000 26.53652 5
3	m	Mean S.D. N	17.04286 2.30157 5	17.31500 2.47264 5	18.24000 2.16646 5	17.53262 2.26836 5	243.28000 31.89353 5

14.74000** 15.18667**

1.22760

5

2.04959

Statistics Test: Dunnett Test: * - 5% significance level;

** - 1% significance level;

S.D.

n - Data not appropriate for statistical analysis;

1.70819

5

n1 - This group has only one value;

Arithmetic Mean Values Presented

Food Consumption Units are g/animal/day. Total = Total consumption for the whole period (g/animal)

Group 1 - Control Clean air Group 2 - 100 mg/m3

Group 3 - 300 mg/m3

Group 4 - 1000 mg/m3

14.36032**

1.63418

5

196.60000

23.45602

Table 6: Food Consumption (cont'd)

RTA074-05/01 Provantis7 - Production Date: 08/04/08 11:19 Page:

Food Consumption - Intergroup Food Consumption by Animal

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

Day numbers relative to Start Date Mean Total 10 14 17 0 From: 6 14 17 21 To: 10 21 21 Group Sex 17.78500 15.73000 14.58000 17.63333 18.65500 20.67333 21.34500 18.05738 392.1000 Mean 0.49705 1.39041 0.59802 S.D. 3.49671 0.53333 1.22778 0.84620 0.73205 8.77012 N 5 5 5 5 5 5 5 5 5 --------------------17.10655 2 15.37500 17.13750 13.90000 16.04167 18.11875 20.31667 18.85625** 366.6500 Mean 0.29887 S.D. 3.06886 1.39903 1.71075 0.74951 0.26874 1.11512 0.27941 9.28386 4 4 N 4 4 4 4 4 4 4 16.81667* 3 Mean 16.73333 16.39167 14.10000 14.77778** 18.76667 18.42083** 16.57242* 355.4000 1.60870 2.28154 1.14193 0.83843 1.47722 0.84984 0.78953 0.83919 S.D. 18.32321 N 6 6 6 6 6 6 6 6 ----------Mean 17.67500 18.03000 12.56000 11.64667** 11.08000** 14.44667** 14.01000** 14.20690** 297.9600 0.41848 4.59393 0.92648 S.D. 1.01842 1.36867 1.72424 1.73183 1.49704 21.29291 N 5 5 5 5 5 5 5 5 5

Statistics Test: Dunnett Test: * - 5% significance level;

** - 1% significance level;

n - Data not appropriate for statistical analysis;

n1 - This group has only one value;

Arithmetic Mean Values Presented

Food Consumption Units are g/animal/day. Total = Total consumption for the whole period (g/animal)

Group 1 - Control Clean air Group 2 - 100 mg/m3

Group 3 - 300 mg/m3

Group 4 - 1000 mg/m3

Roofing Asphalt Fume Condensate

Table 7: Macroscopic Findings

Group/	Cor	ntrol	100 n	ng/m³	300 r	ng/m³	1000	mg/m³
Observation								
Sex	m	f	m	f	m	f	m	f
n*	5	5	5	5	5	6	5	6
Lung red/glassy areas					1		1	
LALN enlarged							2	
Thymus red areas reduced in size	2					4	4	4
Kidney(s) dilated cyst(s)	1		1	1	1			1
Testes reduced in size							1	

^{*}including non-pregnant females

Table 8: Organ Weights

RTA055-05/01 Provantis7 - Production Date: 04/03/08 13:54 Page: 1

Generalised Results - Group Summary by Parameter - Fixed Time

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

Day: 14 relative to Start Date

Liver	Kidney	Kidney	Thymus	Testis	Testis
Weight	Wt left	Wt rigȟt	Weight	Wt left	Wt right
п	a	a	n	a	a

			g	wt Tert g	g	g	wt Tert	g g
Group	Sex		Identity	Identity	Identity	Identity	Identity	Identity
1	m	Mean S.D. N	12.740 1.031 5	1.206 0.108 5	1.202 0.115 5	0.432 0.092 5	1.658 0.076 5	1.654 0.093 5
2	m	Mean S.D. N	13.310 0.780 5	1.212 0.082 5	1.232 0.102 5	0.478 0.131 5	1.634 0.082 5	1.596 0.083 5
3	m	Mean S.D. N	12.828 2.288 5	1.136 0.136 5	1.180 0.160 5	0.374 0.096 5	1.572 0.101 5	1.562 0.090 5
4	m	Mean S.D. N	10.950 1.266 5	1.090 0.160 5	1.118 0.171 5	0.244* 0.057 5	1.556 0.169 5	1.540 0.187 5

Statistics Test: Dunnett Test: * - 5% significance level; ** - 1% significance level;

n - Data not appropriate for statistical analysis;

n1 - This group has only one value;

Arithmetic Mean Values Presented

Group 1 - Control Clean air Group 2 - 100 mg/m3

Group 3 - 300 mg/m3

Table 8: Organ Weights (cont'd)

RTA055-05/01 Provantis7 - Production Date: 08/04/08 11:21 Page: 1

Generalised Results - Group Summary by Parameter - Fixed Time

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

- Reproduction/Developmental Foreign 1000 and Familiar Land

Day: 21 relative to Start Date

			Liver Weight g	Kidney Wt left g	Kidney Wt right g		Ovary Wt left g	Ovary Wt right g
Group	Sex		Identity	Identity	Identity	Identity	Identity	Identity
1	f	Mean S.D. N	11.034 0.780 5	0.792 0.068 5	0.814 0.093 5	0.232 0.041 5	0.0664 0.0105 5	0.0824 0.0097 5
2	f	Mean S.D. N	9.810* 0.953 4	0.740 0.056 4	0.765 0.066 4	0.243 0.022 4	0.0673 0.0136 4	0.0700 0.0157 4
3	f	Mean S.D. N	10.222 0.412 6	0.782 0.064 6	0.850 0.113 6	0.177* 0.027 6	0.0708 0.0099 6	0.0640* 0.0111 6
4	f	Mean S.D. N	9.598** 0.514 5	0.742 0.031 5	0.756 0.050 5	0.112** 0.036 5	0.0674 0.0104 5	0.0634* 0.0065 5

Chabination Took Number Took # 50 significance level.

Statistics Test: Dunnett Test: * - 5% significance level;

** - 1% significance level;

n - Data not appropriate for statistical analysis;

n1 - This group has only one value;

Arithmetic Mean Values Presented

Group 1 - Control Clean air Group 2 - 100 mg/m3

Group 3 - 300 mg/m3

Table 9: Organ Weight/Body Weight Ratios

RTA055-05/01 Provantis7 - Production Date: 04/03/08 13:51 Page: 1

Generalised Results - Group Summary by Parameter - Fixed Time

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

Daι	/ ·	14	rel	ative	tο	Start	Date

		Terminal Bweight g	Liver /Bodywt g/kg	L.Kidney /Bodywt g/kg	R.Kidney /Bodywt g/kg	Thym. /Bodywt g/kg	L.Testis /Bodywt g/kg	R.Testis /Bodywt g/kg
Sex		Identity	Identity	Identity	Identity	Identity	Identity	Identity
m	Mean	299.52	42.57144	4.02878	4.01036	1.43920	5.57812	5.56568
	S.D.	23.38	1.98608	0.21973	0.14948	0.26683	0.69885	0.72755
	N	5	5	5	5	5	5	5
m	Mean	298.50	44.60990	4.06008	4.12884	1.60420	5.48748	5.36744
	S.D.	15.72	1.95577	0.15665	0.28466	0.45339	0.41113	0.52400
	N	5	5	5	5	5	5	5
m	Mean	289.54	44.10354	3.93138	4.07606	1.28106	5.48696	5.44582
	S.D.	37.12	3.11409	0.22142	0.18232	0.23451	0.67391	0.57902
	N	5	5	5	5	5	5	5
m	Mean	260.06	42.06816	4.18136	4.28438	0.93552*	6.01878	5.95626
	S.D.	27.14	0.94345	0.24604	0.25432	0.20114	0.74686	0.80642
	N	5	5	5	5	5	5	5
	m m	m Mean S.D. N m Mean S.D. N Mean S.D. N Mean S.D. N Mean S.D. N Mean Mean Mean	Bweight g Identity Sex m Mean 299.52 S.D. 23.38 N 5 m Mean 298.50 S.D. 15.72 N 5 m Mean 289.54 S.D. 37.12 N 5 m Mean 260.06 S.D. 27.14	Bweight /Bodywt g/kg Identity Identity Sex Mean 299.52 42.57144 S.D. 23.38 1.98608 N	Bweight g /Bodywt g/kg /Bodywt g/kg Sex Identity Identity Identity m Mean S.D. 23.38 1.98608 0.21973 5 5 0.21973 5 5 m Mean 298.50 44.60990 4.06008 S.D. 15.72 1.95577 0.15665 5 5 0.15665 5 5 m Mean 289.54 44.10354 3.93138 S.D. 37.12 3.11409 0.22142 N 5 5 5 0.22142 N 5 5 5 m Mean 260.06 42.06816 4.18136 S.D. 27.14 0.94345 0.24604	Bweight g /Bodywt g/kg /Bodywt g/kg /Bodywt g/kg Sex m Mean S.D. 23.38 1.98608 0.21973 0.14948 0.21973 0.14948 0.21973 0.14948 0.21973 0.14948 0.21973 0.14948 0.21973 0.14948 0.2105 0.21973 0.14948 0.2105	Bweight g / g / kg /Bodywt g / kg /Bodywt g / kg /Bodywt g / kg /Bodywt g / kg Sex m Mean S.D. 23.38 1.98608 0.21973 0.14948 0.26683 N 5 5 5 5 0.21973 0.14948 0.26683 0.21973 0.14948 0.26683 0.21973 0.14948 0.26683 0.21973 0.14948 0.26683 0.21973 0.14948 0.26683 0.21973 0.15665 0.28466 0.45339 0.2015665 0.28466 0.45339 0.25451 0.25665 0.28466 0.45339 0.25665 0.28466 0.45339 0.25665 0.28466 0.45339 0.25665 0.28466 0.45639 0.25665 0.28466 0.45639 0.25665 0.28466 0.45639 0.25665 0.28466 0.45639 0.25665 0.28666 0.28	Bweight g/kg /Bodywt g/kg<

Statistics Test: Dunnett Test: * - 5% significance level; ** - 1% significance level;

n - Data not appropriate for statistical analysis;

n1 - This group has only one value;

Arithmetic Mean Values Presented

Group 1 - Control Clean air Group 2 - 100 mg/m3

Group 3 - 300 mg/m3

Group 4 - 1000 mg/m3

Table 9: Organ Weight/Body Weight Ratios (cont'd)

RTA055-05/01 Provantis7 - Production Date: 08/04/08 11:23 Page: 1

Generalised Results - Group Summary by Parameter - Fixed Time

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

Day: 21 re	lative	to	Start	Date
------------	--------	----	-------	------

			Terminal Bweight g	Liver /Bodywt g/kg	L.Kidney /Bodywt g/kg	R.Kidney /Bodywt g/kg	Thym. /Bodywt g/kg	L.Ovary /Bodywt g/kg	R.Ovary /Bodywt g/kg
Group	Sex		Identity	Identity	Identity	Identity	Identity	Identity	Identity
1	f	Mean S.D. N	280.16 26.64 5	39.66032 4.48490 5	2.85966 0.48040 5	2.94364 0.57674 5	0.84526 0.23478 5	0.239166 0.046799 5	0.294564 0.027464 5
2	f	Mean S.D. N	270.98 6.87 4	36.22000 3.60495 4	2.73203 0.21420 4	2.82460 0.25298 4	0.89650 0.10095 4	0.247518 0.045603 4	0.259108 0.063358 4
3	f	Mean S.D. N	267.60 10.92 6	38.19965 0.34008 6	2.92465 0.27118 6	3.18462 0.49395 6	0.66293 0.11782 6	0.265287 0.039751 6	0.238267 0.033129 6
4	f	Mean S.D. N	244.40** 9.28 5	39.30278 2.28646 5	3.03996 0.17957 5	3.09770 0.24659 5	0.45568** 0.13189 5	0.275988 0.042522 5	0.259756 0.028776 5

Statistics Test: Dunnett Test: * - 5% significance level; ** - 1% significance level;

n - Data not appropriate for statistical analysis;

n1 - This group has only one value;

Arithmetic Mean Values Presented

Group 1 - Control Clean air Group 2 - 100 mg/m3

Group 3 - 300 mg/m3

Fraunhoter ITEM

Final Report 02N07533

page 34 of 126

Range Finding Testing for a Combined Repeated Dose Toxicity Study with the Reproduction/ Developmental Toxicity Screening Test and Mammalian Erythrocyte Micronucleus Test via Inhalation with Roofing Asphalt Fume Condensate

Table 10: Summary of Cesarean Section Data

SUMMARY OF CESAREAN SECTION DATA

		SUMMART OF C			
		Control Clean Air	Low Dose 100 mg/m3	Mid Dose 300 mg/m3	High Dose 1000 mg/m3
Pregnant	N	5	4	6	5
Dams with no Viable	Fetuses N	0	0	0	0
Dams with Viable Fet	uses N	5	4	6	5
Corpora Lutea No. per animal	TOTAL MEAN S.D. p-value	64 12.8 d 4.32 0.813	45 11.3 3.30	74 12.3 0.82	64 12.8 1.10
Implantation Sites No. per animal	TOTAL MEAN S.D. p-value	47 9.4 d 5.18 0.614	40 10.0 2.45	60 10.0 2.61	60 12.0 1.41
Preimplantation Loss Dams with loss	TOTAL N p-value	17 4 f	5 3 1.000	14 5 1.000	4 2 1.000
Dams with loss > 2	. N	4 f	0 0.143	2 0.727	1.000 1 0.619
No. per animal	p-value MEAN S.D. p-value	3.4 d 2.07 0.127	1.3 0.96	2.3 2.07	0.8 1.30
% per animal	MEAN% S.D. p-value	31.6 d 27.52 0.171	9.8 7.22	19.6 18.90	6.0 10.01
Live Fetuses No. per animal	TOTAL MEAN S.D. p-value	46 9.2 d 4.97 0.595	39 9.8 2.50	59 9.8 2.64	59 11.8 1.30
Males	TOTAL MEAN% S.D. p-value	24 51.5 d 5.83 0.065	23 57.7 10.24	29 49.2 11.26	40 66.9 13.11
Females	TOTAL MEAN% S.D. p-value	22 48.5 d 5.83 0.065	16 42.3 10.24	30 50.8 11.26	19 33.1 13.11

Table 10: Summary of Cesarean Section Data (cont'd)

Roofing Asphalt Fume Condensate

SUMMARY OF CESAREAN SECTION DATA

		Control Clean Air	Low Dose 100 mg/m3	Mid Dose 300 mg/m3	High Dose 1000 mg/m3
Postimplantation Loss Dams with loss Dams with loss > 2 No. per animal	TOTAL N p-value N p-value MEAN S.D. p-value	1 1 f 0 f 0.2 d 0.45 0.993	1 1 1.000 0 0.3 0.50	1 1.000 0 0.2 0.41	1 1.000 0 0.2 0.45
% implants per animal	MEAN% S.D. p-value	1.4 d 3.19 0.977	2.5 5.00	1.7 4.08	1.5 3.44
Dead Fetuses No. per animal	TOTAL MEAN S.D. p-value	0 0.0 0.00	0 0.0 0.00	0 0.0 0.00	0 0.0 0.00
% of implants per anima	al MEAN% S.D. p-value	0.0 0.00	0.0 0.00	0.0 0.00	0.0 0.00
Resorptions: Early No. per animal	TOTAL MEAN S.D. p-value	0 0.0 d 0.00 0.549	1 0.3 0.50	0.2 0.41	0 0.0 0.00
% of implants per anima	al MEAN% S.D. p-value	0.0 d 0.00 0.549	2.5 5.00	1.7 4.08	0.0
Resorptions: Late No. per animal	TOTAL MEAN S.D. p-value	1 0.2 d 0.45 0.585	0 0.0 0.00	0 0.0 0.00	1 0.2 0.45
% of implants per anima	al MEAN% S.D. p-value	1.4 d 3.19 0.584	0.0 0.00	0.0 0.00	1.5 3.44

Statistical key: d=Dunnett-test f=Fishers exact test

Table 10: Summary of Cesarean Section Data (cont'd)

Range Finding Testing for a Combined Repeated Dose Toxicity
Study with Roofing Asphalt Fume Condensate

SUMMARY OF CESAREAN SECTION DATA

		Control Clean Air	Low Dose 100 mg/m3	Mid Dose 300 mg/m3	High Dose 1000 mg/m3
Fetal Body Weight (g)	MEAN	4.8 d	4.7	4.5	2.9**
	S.D.	0.21	0.27	0.24	0.51
	N	5	4	6	5
	p-value	0.000	0.908	0.367	0.000
Male Fetuses	MEAN	4.9 d	4.8	4.6	3.0**
	S.D.	0.30	0.33	0.32	0.52
	p-value	0.000	0.930	0.481	0.000
Female Fetuses	MEAN	4.7 d	4.5	4.4	2.8**
	S.D.	0.13	0.24	0.21	0.54
	p-value	0.000	0.777	0.400	0.000

Statistical key: d=Dunnett-test ** = p<0.01

Table 11: Summary of Gravid Uterine Weight and Net Body Weight Change

Range Finding Testing for a Combined Repeated Dose Toxicity Study with Roofing Asphalt Fume Condensate

SUMMARY OF GRAVID UTERINE WEIGHT AND NET BODY WEIGHT CHANGE (GRAMS)

		Control Clean Air	Low Dose 100 mg/m3	Mid Dose 300 mg/m3	High Dose 1000 mg/m3
NET BODY WT. CHANGE	MEAN S.D. N p-value	81 d 23.7 5 0.000	74 7.3 4 0.769	67 12.8 6 0.269	34** 3.5 5 0.000
GRAVID UTERINE WT.	MEAN S.D. N p-value	57 d 28.0 5 0.701	59 11.6 4	58 13.9 6	48 3.3 5
NET WEIGHT CHANGE MINUS UTERINE WT.	MEAN S.D. N p-value	25 d 4.8 5 0.000	15 9.7 4 0.055	9** 3.8 6 0.001	-14** 4.6 5 0.000

Statistical key: d=Dunnett-test ** = p<0.01

NET BODY WT. CHANGE = TERMINAL BODY WT. MINUS DAY 6 BODY WEIGHT NET WEIGHT CHANGE = NET BODY WT. CHANGE MINUS UTERINE WEIGHT

Table 12: Histopathological Findings

Page: 1 Date:14-APR-2008 Time:13:23

FRAUNHOFER INSTITUTE OF TOXICOLOGY AND EXPERIMENTAL MEDICINE

STUDY: 02N07533

Summary of Histopathological Findings

		 !		INCIDEN	CE OF L	ESIONS	(PERCEN	T)	
		!	Ma	les		!	Fem	ales	
LESIONS			!mg/m3	!mg/m3			!mg/m3	!mg/m3	!1000 !mg/m3 !THC
	!ANIMAL TOTALS	(5)	: ! (5)	: ! (5)	: ! (5)	: ! (5)	! ! (5)	: ! (6)	: ! (6)
NASAL and PARANASAL CAVITIES		! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (6)	! ! (6)
No abnormality detected		! 3 ! (60%)	! 0	! 0 ! (0%)	! (0%)	! 3 ! (60%)	! 1 ! (20%)	! 0 ! (0%)	! 0
Mucous (goblet) cell hyperplasia		! (60%) ! 0	! (0%)! 3	! (0%) ! 5**	! (0%) ! 5**	! (60%) ! 0	! 2	! `6**	! (0%) ! 6**
Basal-cell hyperplasia, respiratory epithelium	n	! (0%) ! 0	! 3	!(100%)	! 1	! 0	! (40%)	! 1	!(100%) ! 0
Basal-cell hyperplasia, olfactory epithelium		! (0%) ! 0	! (60%) ! 0	! (20%) ! 0	! (20%) ! 0	! (0%) ! 0	! (20%) ! 0	! (17%) ! 0	! (0%) ! 1
Atrophy, olfactory epithelium		! (0%) ! 0	! (0%) ! 0	! (0%) ! 0	! (0%) ! 2	! (0%) ! 0	! (0%) ! 0	! (0%) ! 0	!(17%) ! 3
Mucosal inflammatory cell infiltration		! (0%) ! 2	! (0%) ! 2	! (0%) ! 4	! (40%) ! 3	! (0%) ! 2	! (0%) ! 0	! (0%) ! 3	! (50%) ! 2
Mucosal mineralisation		! (40%) ! 1	! (40%) ! 0	! (80%) ! 1	! (60%) ! 0	! (40%) ! 0	! (0%) ! 1	! (50%) ! 0	! (33%) ! 1
Submucosal cyst		! (20%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)	! (20%) ! 0 ! (0%)	! (0%) ! 1 ! (20%)	! (0%) ! 0 ! (0%)	! (20%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)	! (17%) ! 0 ! (0%)
PHARYNX (LARYNGO-)		(5)	! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (6)	! ! (6)
No abnormality detected		5 (100%)	! ! 5 !(100%)	! ! 5 !(100%)	! ! 5 !(100%)	! ! 5 !(100%)	! ! 5 !(100%)	! ! 6 !(100%)	! ! 6 !(100%)
LARYNX		(5)	! (5)	! (5)	! ! (5)	! (5)	! (5)	! (6)	! (6)
No abnormality detected		: ! 2	: ! 4	! 3	! ! 3 ! (60%)	: ! 4	: ! 3	: ! 4	: ! 4
Mucous (goblet) cell hyperplasia		! (40%) ! 0	! 0 1	! 0 1	!`1´	! ` 0 ´	! 0	! `0 ´	! (67%) ! 0
Epithelial alteration		! (0%) ! 1	! (0%)	! (0%) ! 1	! (20%) ! 0	! 0	! (0%)	! (0%) ! 0	! (0%) ! 0
Mucosal mononuclear/inflammatory cell infiltra	ation	! (20%) ! 3 ! (60%)	! (0%) ! 1 ! (20%)	! (20%) ! 1 ! (20%)	! (0%) ! 2 ! (40%)	! (0%) ! 1 ! (20%)	! (0%) ! 2 ! (40%)	! (0%) ! 2 ! (33%)	! (0%) ! 2 ! (33%)

Table 12: Histopathological Findings

Page: 2 Date:14-APR-2008 Time:13:23

FRAUNHOFER INSTITUTE OF TOXICOLOGY AND EXPERIMENTAL MEDICINE

STUDY: 02N07533 Summary of Histopathological Findings

		! !	! !		INCIDEN	CE OF L	ESIONS	(PERCEN	T)	
			!	Ma	les		!	Fem	ales	
LESIONS !	! TREATI			!mg/m3	!mg/m3			!mg/m3	!mg/m3	!1000 !mg/m3 !THC
	! !ANIMAL ⁻	TOTALS!	! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (6)	! (6)
! ! LARYNX		!	! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (6)	! (6)
! ! Submucosal foreign-body granuloma !			1 (20%)	! 0 ! (0%)	! 0	! 0 ! (0%)	! ! 0 ! (0%)	! 0 ! (0%)	! ! 0 ! (0%)	! ! 0 ! (0%)
TRACHEA			(5)	! ! (5)	! (5)	! ! (5)	! ! (5)	! (5)	! ! (6)	! (6)
: ! No abnormality detected !			! ! 5 !(100%)	: ! 5 !(100%)	! ! 4 ! (80%)	! ! 2 ! (40%)	: ! 5 !(100%)	! ! 5 !(100%)	: ! 6 !(100%)	! ! 4 ! (67%)
! Mucous (goblet) cell hyperplasia !			! (0%)	! (0%) ! (0%)	! 1	! ` 3 ´	!` 0 ´	!` 0 ′	! (0%) ! (0%)	! (33%)
LUNGS			(5)	! ! (5)	! (5)	! ! (5)	! ! (5)	! (5)	! ! (6)	! (6)
: ! No abnormality detected			! ! 3 ! (60%)	! ! 5 !(100%)	! ! 1 ! (20%)	! ! 0 ! (0%)	: ! 5 !(100%)	! ! 3 ! (60%)	: ! 0** ! (0%)	! ! 0** ! (0%)
: ! Alveolar histiocytosis			! (0%) ! (0%)	! (100%) ! 0 ! (0%)	! `3´.	! (5** ! (100%)	! 0	! (00%) ! 2 ! (40%)	. (0%) ! 5* ! (83%)	! (0%) ! 6** !(100%)
Interstitial mononuclear/inflammatory cell in	filtratio	n !	! (20%)	! ` 0´	! (40%)	!` 4 <i>´</i>	! ` 0´	! (0%) ! (0%)	! 2	! 6** ! (100%)
Alveolar inflammatory cell infiltration			! (20%) ! (20%)	! 0	!] 1 [. (50°) ! 5* ! (100%)	! 0	! (0%) ! (0%)	. (33%) ! 0 ! (0%)	! 6** ! (100%)
Bronchiolo-alveolar hyperplasia			! (20%) ! (0%)	! (0%) ! (0%)	! (0%)	! (100%) ! 2 ! (40%)	! ` 0´	! (0%) ! (0%)	! (0%) ! (0%)	! (100%) ! 4 ! (67%)
: ! Neuroendocrine cell hyperplasia			! (0%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)	! (0%) ! 1 ! (20%)	! `0 ´	! (0%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)	! (0/%) ! 0 ! (0%)
: ! Alveolar haemorrhage			! (0%) ! 1 ! (20%)	! ` 0´	! (20%) ! 1 ! (20%)	! ` 0´	! (0%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)
: ! Interstitial fibrosis			!``0´	! ` 0 (! 0	! ` 0´	! ` 0´	! (0%) ! 0 ! (0%)	! 0	! 1
: ! Congestion !			! (0%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)	! (0%) ! 1 ! (20%)	! (0%) ! 0 ! (0%)	! (0%)! (0%)	! (0%) ! 0 ! (0%)	! (17%) ! 0 ! (0%)

Table 12: Histopathological Findings

Page: 3
Date:14-APR-2008 Time:13:23

FRAUNHOFER INSTITUTE OF TOXICOLOGY AND EXPERIMENTAL MEDICINE

STUDY: 02N07533

Summary of Histopathological Findings

! !	! INCIDENCE OF LESIONS (PERCENT)										
!		į	Ma	les		!	Fem	nales			
LESIONS !	! TREATMENT ! !	!Clean !Air !		!mg/m3	!1000 !mg/m3 !THC	!Clean !Air !	!mg/m3	!mg/m3	!1000 !mg/m3 !THC		
	! !ANIMAL TOTALS	! (5)	! (5)	! (5)	! ! (5)	! (5)	! (5)	! (6)	! (6)		
! ! LUNG ASSOCIATED LYMPH NODES		! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (6)	! (6)		
! No abnormality detected		! 5 !(100%)	! 5 !(100%)	! 5 !(100%)	! 3 ! (60%)	! 5 !(100%)	! 5 ! (100%)	! 6 !(100%)	! (6 !(100%)!		
Lymphoid hyperplasia ! !		! (100%) ! (0%) !	! (0%) ! (0%) !	! (100%) ! 0 ! (0%)	! (00%) ! 2 ! (40%) !	!` 0 ´	! 0	! (100%) ! (0%) !	! (100%) ! 0 ! ! (0%) !		

Table 13: Histopathological Findings (with score expansion)

Page: 1
Date: 8-APR-2008 Time:10:38

FRAUNHOFER INSTITUTE OF TOXICOLOGY AND EXPERIMENTAL MEDICINE

STUDY: 02N07533

Summary of Histopathological Findings (with score expansion)

		! !		INCIDEN	CE OF L	ESIONS	(PERCEN	T)	
: 		!	Ma	les		!	Fem	ales	
LESIONS			!mg/m3	!mg/m3			!mg/m3	!mg/m3	!1000 !mg/m3 !THC
: ! !	! !ANIMAL TOTALS	(5)	! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (6)	! ! (6)
! ! NASAL and PARANASAL CAVITIES		! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (6)	! ! (6)
: ! No abnormality detected		! 3 ! (60%)	! 0 ! (0%)	! 0 ! (0%)	! 0 ! (0%)	! 3 ! (60%)	! 1 ! (20%)	! 0 ! (0%)	! 0 ! (0%)
: ! Mucous (goblet) cell hyperplasia ! very slight		! ` ´ ! 0	! ` ´ . ´	! ´ ´	! ! 0	! ` ´ ´ ´	! ! 2	! ` ´ ! 1	! ! 0
! ! slight		! (0%) ! 0 ! (0%)	! (60%) ! 0 ! (0%)	! (40%) ! 3 ! (60%)	! 3	! 0	! (40%) ! 0 ! (0%)	! (17%) ! 5* ! (83%)	! 3
! moderate		! (0%) ! (0%)	! (0%) ! (0%)	! 0	! 2	! 0	! (0%)	! 0	! (50%) ! 3 ! (50%)
: ! Score Expanded Totals		! (0%) ! 0 ! (0%)	! ` 3´	! (5%) ! 5** !(100%)	! `5**´	! ` 0´	! ` 2´	! (0%) ! 6** !(100%)	! 6**
: ! Basal-cell hyperplasia, respiratory epitheliu ! very slight	n	! 0	! ` ´ ´ ! 2	! ! 1	! ! 0	! ` ´ · · · · · · · · · · · · · · · · · ·	! ` ´ ´ ´	!` ´ ! 1	! ! 0
! ! slight		! (0%) ! 0 ! (0%)	! ` 1 <i>´</i>	! (20%) ! 0 ! (0%)	! `1´	! 0	! (20%) ! 0 ! (0%)	! ` 0 ´	! (0%) ! 0 ! (0%)
: ! Score Expanded Totals !		! (0%) ! (0%)	! ` 3 ´	! (20%)	! `1´	! ` 0´	! (20%)	! ` 1 [′]	! ` 0´
! Basal-cell hyperplasia, olfactory epithelium ! very slight		! 0	! ! 0	! 0	! ! 0	! ` ´ · · · · · · · · · · · · · · · · · ·	! 0	! ! 0	! ` ´ ! 1
! ! Score Expanded Totals !		! (0%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)	! 0	! 0	! (0%) ! 0 ! (0%)	! (17%) ! 1 ! (17%)
! Atrophy, olfactory epithelium ! very slight		! ´ ´ ! 0	! ` ´ ´ ·	! 0	! ! 2	! ` ´ ´ ·	! ! 0	! ! 0	! ` ´ ! 3
: ! Score Expanded Totals !		! (0%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)	! (40%) ! 2 ! (40%)	! 0	! (0%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)	! (50%) ! 3 ! (50%)
! Mucosal inflammatory cell infiltration ! very slight		! ` ´ ! 1	! ` ´ ! 1	! ` ´ ! 1	! ` ´ ! 1	! ` ´ ! 1	! 0	! ! 3	! ` ´ ! 2
! ! slight !		! (20%) ! 1 ! (20%)	! 1	! (20%) ! 3 ! (60%)	! `1´	! `1 ´	! ` 0´	! (50%) ! 0 ! (0%)	! (33%) ! 0 ! (0%)

Table 13: Histopathological Findings (with score expansion)

Page: 2
Date: 8-APR-2008 Time:10:38

FRAUNHOFER INSTITUTE OF TOXICOLOGY AND EXPERIMENTAL MEDICINE

STUDY: 02N07533

Summary of Histopathological Findings (with score expansion)

		 ! '		INCIDEN	CE OF L	ESIONS	(PERCEN	T)	
		! !	Ma	les		!	Fem	ales	
LESIONS			!mg/m3	!mg/m3	!mg/m3		!mg/m3	!mg/m3	!1000 !mg/m3 !THC
: ! !	: !ANIMAL TOTALS	: ! (5) 	! ! (5)	! ! (5)	: ! (5) 	: ! (5)	! ! (5)	: ! (6)	! ! (6)
! ! NASAL and PARANASAL CAVITIES		! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (6)	! ! (6)
Mucosal inflammatory cell infiltration moderate		! ! 0 ! (0%)	! ! 0 ! (0%)	! ! 0 ! (0%)	! ! 1 ! (20%)	! ! 0 ! (0%)	! ! 0 ! (0%)	! ! 0 ! (0%)	! ! 0 ! (0%)
! Score Expanded Totals !		! (3%) ! 2 ! (40%)	! `2´	! `4	! ` 3 ´	! ` 2´	! ` 0´	. (5%) ! 3 ! (50%)	! ` 2´
Mucosal mineralisation ! very slight		! ! ! 1 ! (20%)	! ! 0	! ! 1 ! (20%)	! ! 0	! ! 0 ! (0%)	! ! 1 ! (20%)	! ` ´ ´ ! 0	! ! 1 ! (17%)
: ! Score Expanded Totals		! (20%) ! 1 ! (20%)	! ` 0´	! `1´	! ` 0´	! ` 0´	! (20%) ! 1 ! (20%)	! ` o´	! (17%) ! 1 ! (17%)
: ! Submucosal cyst !		! (20%) ! 0 ! (0%)	! 0	! (20%)! 0	! (0%) ! 1 ! (20%)	! 0	! (20%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)	! (1/%)! 0
! ! PHARYNX (LARYNGO-)		! ! (5)	! (5)	! (5)	! ! (5)	! (5)	! (5)	! ! (6)	! (6)
! ! No abnormality detected !		! ! 5 !(100%)	! ! 5 !(100%)	! ! 5 !(100%)	! ! 5 !(100%)	! ! 5 !(100%)	! ! 5 !(100%)	! ! 6 !(100%)	! ! 6 !(100%)
: ! LARYNX		! ! (5)	! (5)	! (5)	! ! (5)	! (5)	! (5)	(6)	! (6)
: ! No abnormality detected		: ! 2 ! (40%)	! 4 ! (80%)	! 3 ! (60%)	: ! 3 ! (60%)	! 4 ! (80%)	: ! 3 ! (60%)	: ! 4 ! (67%)	! 4 ! (67%)
! Mucous (goblet) cell hyperplasia ! very slight		! ! ! 0 ! (0%)	! 0	! (0%) ! 0 ! (0%)	! ` ´ ! 1	! ! 0 ! (0%)	! 0	. (07%) ! ! 0 ! (0%)	! (0%) ! 0 ! (0%)
: ! Score Expanded Totals !		: (0%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)	! 1	! 0	! (0%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)
! Epithelial alteration ! very slight		! ! ! 1 ! (20%)	! ´´ ! 0	! ! 1 ! (20%)	! ` ´ ! 0	! ! 0 ! (0%)	! ! 0 ! (0%)	! ! ! 0 ! (0%)	! (0%) ! 0 ! (0%)
: ! Score Expanded Totals !		! (20%) ! 1 ! (20%)	! 0	! (20%)!!!!	! 0	! (0%)	! (0%)	! (0%) ! 0 ! (0%)	! (0%)

Table 13: Histopathological Findings (with score expansion)

Page: 3
Date: 8-APR-2008 Time:10:38

FRAUNHOFER INSTITUTE OF TOXICOLOGY AND EXPERIMENTAL MEDICINE

STUDY: 02N07533

Summary of Histopathological Findings (with score expansion)

		 !		INCIDEN	CE OF L	ESIONS	(PERCEN	 Т)	
		!	Ma	les		!	Fem	ales	
LESIONS			!mg/m3	!mg/m3	!mg/m3		!mg/m3	!mg/m3	!1000 !mg/m3 !THC
i	!ANIMAL TOTALS	(5)	: ! (5)	! ! (5)	: ! (5)	: ! (5)	! (5)	: ! (6)	: ! (6)
LARYNX		! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (6)	! ! (6)
Mucosal mononuclear/inflammatory cell infiltr very slight	ation	! ! 2 ! (40%)	! ! 1 ! (20%)	! ! 1 ! (20%)	! ! 2 ! (40%)	! ! 1 ! (20%)	! ! 2 ! (40%)	! ! 2 ! (33%)	: ! ! 1 ! (17%)
slight		! (20%) ! (20%)	! ` 0 ´	! (0%) ! (0%)	! `0 ´	! (0%) ! (0%)	! (0%) ! (0%)	! (0%) ! (0%)	! 1 ! (17%)
Score Expanded Totals		! 3 ! (60%)	! ` 1´	! 1	! `2´	! 1	! `2´	! `2´	! `2´
! Submucosal foreign-body granuloma ! slight		! ! 1 ! (20%)	! ! 0 ! (0%)	! ! 0 ! (0%)	! ! 0 ! (0%)	! ! 0 ! (0%)	! ! 0 ! (0%)	! ! 0 ! (0%)	! ! 0 ! (0%)
Score Expanded Totals		! 1 ! (20%)	! ` 0´	! (0%)	! (0%)	! (0%)	! (0%)	! (0%)	! (0%)
TRACHEA		! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (5)	! (6)	! (6)
No abnormality detected		: ! 5 !(100%)	: ! 5 !(100%)	: ! 4 ! (80%)	: ! 2 ! (40%)	: ! 5 !(100%)	: ! 5 !(100%)	: ! 6 !(100%)	: ! 4 ! (67%)
Mucous (goblet) cell hyperplasia very slight		! ! 0	! ! 0	! 1	! ! 3	! ! 0	! ! 0	! ! 0	! ! 2
! ! Score Expanded Totals !		! (0%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)	! `1 ´	! ` 3 ´	! 0	! (0%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)	! (33%) ! 2 ! (33%)
LUNGS		! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (5)	! (6)	! (6)
No abnormality detected		! ! 3 ! (60%)	! ! 5 !(100%)	! ! 1 ! (20%)	! ! 0 ! (0%)	! ! 5 !(100%)	! ! 3 ! (60%)	! ! 0** ! (0%)	! ! 0** ! (0%)
Alveolar histiocytosis very slight		! ` ´ ! 0	!` ´ ! 0	! ' '	! ` ´ ! 2	! ! 0	! ! 2	! ` ´ ! 5*	! ` ´ ! 1
! ! slight !		! (0%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)	! (60%) ! 0 ! (0%)	! (40%) ! 3 ! (60%)	! 0	! (40%) ! 0 ! (0%)	! (83%) ! 0 ! (0%)	! (17%) ! 5* ! (83%)

Table 13: Histopathological Findings (with score expansion)

Page: 4
Date: 8-APR-2008 Time:10:38

FRAUNHOFER INSTITUTE OF TOXICOLOGY AND EXPERIMENTAL MEDICINE

STUDY: 02N07533

Summary of Histopathological Findings (with score expansion)

		 ! '		INCIDEN	CE OF L	ESIONS	(PERCEN	 Т)	
		! !	Má	ıles		!	Fem	ales	
LESIONS				!mg/m3		!Clean !Air !	!mg/m3		!1000 !mg/m3 !THC
	! !ANIMAL TOTALS	! ! (5)	! (5)	! (5)	! ! (5)	! (5)	! (5)	! (6)	! (6)
LUNGS		! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (5)	! ! (6)	! ! (6)
Alveolar histiocytosis Score Expanded Totals		! ! 0 ! (0%)	! ! 0 ! (0%)	! ! 3 ! (60%)	! ! 5** !(100%)		! ! 2 ! (40%)	! ! 5* ! (83%)	! ! 6** !(100%)
<pre>Interstitial mononuclear/inflammatory cell in very slight</pre>	filtration	. (0%) ! ! 1 ! (20%)	! 0	! ! 2 ! (40%)	! ! 2	! 0	! 0	! ! 2 ! (33%)	! 3
slight		. (20%) ! (0%)	! (0%)	! (0%)	! (40%) ! (40%)	! 0	! 0	! (0%) ! (0%)	! (50%) ! (50%)
Score Expanded Totals		. (0°) ! 1 ! (20%)	! ` 0´	! 2 ! (40%)	! ` 4 ´	! ` 0´	! (0%)	! `2´	! 6** ! (100%)
Alveolar inflammatory cell infiltration very slight		! ! ! 1 ! (20%)	! 0	! ! 1 ! (20%)	! ! 4	! 0	! ! 0 ! (0%)	! ! 0 ! (0%)	! ! 4 ! (67%)
slight		! `0 ´	! 0	! (20%) ! 0 ! (0%)	! `1 ´	! 0	! (0%)	! (0%) ! 0 ! (0%)	! (07%) ! 2 ! (33%)
Score Expanded Totals		! (0%) ! 1 ! (20%)	! ` 0´	! 1	! (20%) ! 5* !(100%)	! ` 0´	! 0	! 0	! (33%) ! 6** !(100%)
Bronchiolo-alveolar hyperplasia very slight		. (200) ! ! 0	! 0	! 0	! ! ! 2	! 0	! 0	! 0	! 4
Score Expanded Totals		! (0%) ! 0	! 0	! (0%)	! 2	! ` 0´	! 0	! (0%)	! (67%) ! 4
Neuroendocrine cell hyperplasia slight		! (0%) ! ! 0	! (0%) ! ! 0	! (0%) ! ! 1	! ! 0	! ! 0	! 0	! (0%) ! ! 0	! (67%) ! ! 0
Score Expanded Totals		! (0%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)	! (20%) ! 1 ! (20%)	! ` 0´	! (0%) ! 0 ! (0%)	! 0	! (0%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)
Alveolar haemorrhage very slight		: (0%) ! ! 1	! (0%)!	! ! ! 1	! (0%) ! ! 0	! (0%) ! ! 0	! (0%) ! ! 0	! (0%) ! ! 0	! (0%)
Score Expanded Totals		! (20%) ! 1 ! (20%)	! (0%)	! (20%) ! 1 ! (20%)	! (0%) ! 0	! (0%) ! 0 ! (0%)			

Table 13: Histopathological Findings (with score expansion)

Page: 5
Date: 8-APR-2008 Time:10:38

FRAUNHOFER INSTITUTE OF TOXICOLOGY AND EXPERIMENTAL MEDICINE

STUDY: 02N07533

Summary of Histopathological Findings (with score expansion)

		 ! !		INCIDEN	CE OF L	ESIONS	(PERCEN	T)	
: ! !		! !	Ma	les		!	Fem	ales	
LESIONS			!mg/m3	!mg/m3	!1000 !mg/m3 !THC		!mg/m3	!mg/m3	!1000 !mg/m3 !THC
: ! !	! !ANIMAL TOTALS	! ! (5)	! ! (6)	! (6)					
!!!LUNGS		! ! (5)	! ! (6)	! (6)					
: ! Interstitial fibrosis ! very slight		: ! ! 0 ! (0%)	! ! 0 ! (0%)	! ! 0 ! (0%)	! ! 0 ! (0%)	: ! ! 0 ! (0%)	! ! 0 ! (0%)	! ! 0 ! (0%)	: ! ! 1 ! (17%)
: ! Score Expanded Totals !		: (0%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)	! (0%) ! (0%)	! (0%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)	! (0%) ! 0 ! (0%)	! (17%) ! 1 ! (17%)
! Congestion ! severe		! ! 0 ! (0%)	! ! 0 ! (0%)	! ! 0 ! (0%)	! ! 1 ! (20%)	! ! 0	! ! 0 ! (0%)	! ! 0 ! (0%)	! 0 ! (0%)
Score Expanded Totals		! (0%) ! (0%)	! (0%)	! (0%)	! (20%)	! 0	! 0	! (0%)	! (0%)
: ! LUNG ASSOCIATED LYMPH NODES		: ! (5)	! ! (5)	! ! (5)	: ! (5)	: ! (5)	! ! (5)	! ! (6)	! ! (6)
No abnormality detected		! 5 ! (100%)	! 5 ! (100%)	! 5 ! (100%)	! 3 ! (60%)	! 5 ! (100%)	! 5 ! (100%)	! (100%)	! 6 ! (100%)
! Lymphoid hyperplasia ! slight !		! ! 0 ! (0%)	! ! 0 ! (0%)	! ! 0 ! (0%)	! ! 2 ! (40%)	! ! 0 ! (0%)	! ! 0 ! (0%)	! ! 0 ! (0%)	! ! 0 ! (0%)
Score Expanded Totals		! (0%) ! (0%)	! (0%)	! (0%)	! (40%)	! 0	! (0%)	! (0%)	! (0%)

Table 14: Blood Formation

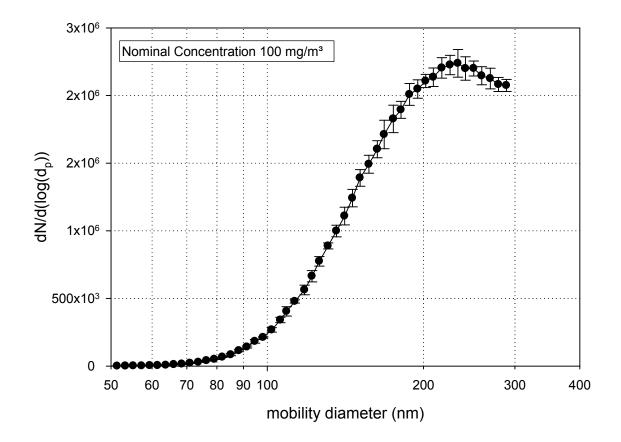
Study No.: 02N0	7533	Male	es	Females						
RAFC [mg/m³]	Animals	PCE/400 RBC	PCE/NCE	PCE/400 RBC	PCE/NCE					
0	5	133 ± 11.4	0.50 ± 0.063	142 ± 12.1	0.55 ± 0.077					
300	4	n.d.	n.d.	135 ± 22.4	0.52 ± 0.128					
1000	5	120 ± 13.2	0.43 ± 0.069	110 ± 17.6**	0.38 ± 0.085**					

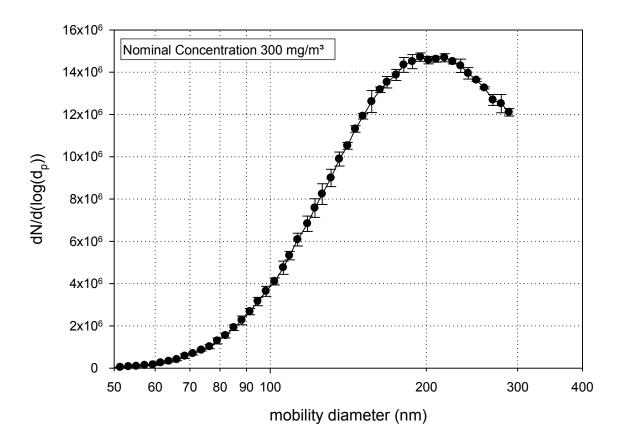
RAFC = Roofing asphalt fume condensate

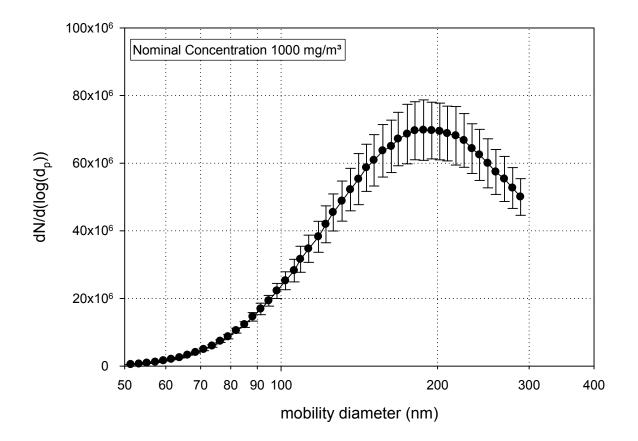
PCE = Polychromatic erythrocytes

RBC = Red blood cells

NCE = Normochromatic erythrocytes


n.d. = Not determined


Data represent means ± standard deviations


^{** =} Significantly different from control animals: $p \le 0.01$, Student's *t*-test for unpaired values.

Appendix A

Particle Size Distributions measured

Fraunhofer ITEM Final Report 02N07533 page 50 of 126
Range Finding Testing for a Combined Repeated Dose Toxicity Study with the Reproduction/ Developmental Toxicity Screening Test and Mammalian Erythrocyte Micronucleus Test via Inhalation with Roofing Asphalt Fume Condensate

Appendix B

Clinical Observations Individual Data

RTA001-01/00 Provantis7 - Production Date: 27/03/08 8:22 Page: 1

Clinical Observations - Clinical Signs by Animal

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

Day numbers relative to Start Date

Group	Sex	Animal	Clinical Sign	3	4	5	6	1 0	1	1 2	1 3	1 4	1 7	1 8	1 9	2 0	2 1	
1	m	1101	No Abnormalities Detected	Х				Χ										
_			Killed - terminal kill	•				•				X						
		1102	No Abnormalities Detected	Χ				Χ										
			Killed - terminal kill									Χ						
		1103	No Abnormalities Detected	Χ				Χ										
			Killed - terminal kill									Χ						
		1104	No Abnormalities Detected	Χ				Χ										
			Killed - terminal kill									Χ						
		1105	No Abnormalities Detected	Χ				Χ										
			Killed - terminal kill									Χ						

Severity Codes: X = Present

Group 1 - Control Clean air Group 2 - 100 mg/m3

Group 3 - 300 mg/m3

Group 4 - 1000 mg/m3

RTA001-01/00 Provantis7 - Production Date: 27/03/08 8:22 Page: 2

Clinical Observations - Clinical Signs by Animal

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

Day numbers relative to Start Date

Group	Sex	Animal	Clinical Sign	3	4	5	6	1 0	1	1 2	1 3	1 4	1 7	1 8	1 9	2 0	2
2	m	2101	No Abnormalities Detected	Х				Х									
=	***		Killed - terminal kill	•								X					
		2102	No Abnormalities Detected	Χ				Χ									
			Killed - terminal kill									Χ					
		2103	No Abnormalities Detected	Χ				Χ									
			Killed - terminal kill									Χ					
		2104	No Abnormalities Detected	Χ				Χ									
			Killed - terminal kill									Χ					
		2105	No Abnormalities Detected	Χ				Χ									
			Killed - terminal kill									Χ					

RTA001-01/00 Provantis7 - Production Date: 27/03/08 8:22 Page: 3

Clinical Observations - Clinical Signs by Animal

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

Day numbers relative to Start Date

Group	Sex	Animal	Clinical Sign	3	4	5	6	1 0	1 1	1 2	1 3	1 4	1 7	1 8	1 9	2 0	2
3	m	3101	No Abnormalities Detected	Χ				Χ									
			Killed - terminal kill									Χ					
		3102	No Abnormalities Detected	Χ				Χ									
			Killed - terminal kill									Χ					
		3103	No Abnormalities Detected	Χ				Χ									
			Killed - terminal kill									Χ					
		3104	No Abnormalities Detected	Χ				Χ									
			Killed - terminal kill									Χ					
		3105	No Abnormalities Detected	Χ				Χ									
			Killed - terminal kill									Χ					

Severity Codes: X = Present

Group 1 - Control Clean air Group 2 - 100 mg/m3

Group 3 - 300 mg/m3

Group 4 - 1000 mg/m3

RTA001-01/00 Provantis7 - Production Date: 27/03/08 8:22 Page: 4

Clinical Observations - Clinical Signs by Animal

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

Day numbers relative to Start Date

Group	o Sex	Animal	Clinical Sign	3	4	5	6	1 0	1	1 2	1 3	1 4	1 7	1 8	1 9	2 0	2 1
4	m	4101	No Abnormalities Detected	Х				Х									
			Killed - terminal kill					•				X					
		4102	No Abnormalities Detected	Χ				Χ									
			Killed - terminal kill									Χ					
		4103	No Abnormalities Detected	Χ				Χ									
			Killed - terminal kill									Χ					
		4104	No Abnormalities Detected	Χ				Χ									
			Killed - terminal kill									Χ					
		4105	No Abnormalities Detected	Χ				Χ									
			Killed - terminal kill	•				•				X					

RTA001-01/00 Provantis7 - Production Date: 27/03/08 8:22 Page: 5

Clinical Observations - Clinical Signs by Animal

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

Day numbers relative to Start Date

Group	p Sex	Animal	Clinical Sign	3	4	5	6	1 0	1 1	1 2	1 3	1 4	1 7	1 8	1 9	2 0	2 1
1	f	1201	No Abnormalities Detected				Х				Х					Х	
			Killed - terminal kill														Χ
		1202	No Abnormalities Detected				Χ				Χ					Χ	
			Killed - terminal kill														Χ
		1203	No Abnormalities Detected			Χ				Χ					Χ		
			Killed - terminal kill														Χ
		1204	No Abnormalities Detected			Χ				Χ					Χ		
			Killed - terminal kill														Χ
		1205	No Abnormalities Detected		Χ				Χ					Χ			
			Killed - terminal kill														Χ

RTA001-01/00 Provantis7 - Production Date: 27/03/08 8:22 Page: 6

Clinical Observations - Clinical Signs by Animal

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

Day numbers relative to Start Date

Grou	p Sex	Animal	Clinical Sign	3	4	5	6	1 0	1 1	1 2	1 3	1 4	1 7	1 8	1 9	2 0	2 1
2	f	2201	No Abnormalities Detected				Χ				Х					Х	
			Killed - terminal kill														Χ
		2202	No Abnormalities Detected				Χ				Χ					Χ	
			Killed - terminal kill														Χ
		2203	No Abnormalities Detected			Χ				Χ					Χ		
			Killed - terminal kill														Χ
		2204	No Abnormalities Detected		Χ				Χ					Χ			
			Killed - terminal kill														Χ
		2205	No Abnormalities Detected		Χ				Χ					Χ			
			Killed - terminal kill				•		•		•						Χ

RTA001-01/00 Provantis7 - Production Date: 27/03/08 8:22 Page: 7

Clinical Observations - Clinical Signs by Animal

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

Day numbers relative to Start Date

Group	Sex	Animal	Clinical Sign	3	4	5	6	1 0	1 1	1 2	1 3	1 4	1 7	1 8	1 9	2 0	2 1
2	£	2201	No Abnormalities Detected				v				v					v	
3	Т	3201	No Abnormalities Detected Killed - terminal kill	•	•	•	Χ	•	•	•	Χ	•	•	•	•	λ	٠
				•	•	•	•	•	•	•	•	•	•	•	•	•	٨
		3202	No Abnormalities Detected	•	•	•	Χ	•	•	•	Χ	•	•	•	•	Х	:
			Killed - terminal kill			•											Х
		3203	No Abnormalities Detected			Χ				Χ					Χ		
			Killed - terminal kill														Χ
		3204	No Abnormalities Detected		Χ				Χ					Χ			
			Killed - terminal kill														Χ
		3205	No Abnormalities Detected		Χ				Χ					Χ			
			Killed - terminal kill														Χ
		3206	No Abnormalities Detected	Χ				Χ					Χ				
			Killed - terminal kill				•										Χ

RTA001-01/00 Provantis7 - Production Date: 27/03/08 8:22 Page: 8

Clinical Observations - Clinical Signs by Animal

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

Day numbers relative to Start Date

Grou	p Sex	Animal	Clinical Sign	3	4	5	6	1 0	1 1	1 2	1 3	1 4	1 7	1 8	1 9	2 0	2 1
4	f	4201	No Abnormalities Detected				X				X					X	
7		7201	Killed - terminal kill	:	•	•		:	•	•		•	•	:	:		X
		4202	No Abnormalities Detected			Χ				Χ					Χ		
			Killed - terminal kill														Χ
		4203	No Abnormalities Detected			Χ	•		•	Χ	•				Χ		
			Killed - terminal kill				•		•		•						Χ
		4204	No Abnormalities Detected		Χ		•		Χ		•			Χ			
			Killed - terminal kill														Χ
		4205	No Abnormalities Detected	Χ				Χ					Χ				
			Killed - terminal kill														Χ
		4206	No Abnormalities Detected	Χ				Χ					Χ				
			Killed - terminal kill				•		•								Χ

Severity Codes: X = Present

Group 1 - Control Clean air Group 2 - 100 mg/m3

Group 3 - 300 mg/m3

Group 4 - 1000 mg/m3

Fraunhofer ITEM Final Report 02N07533 page 59 of 126
Range Finding Testing for a Combined Repeated Dose Toxicity Study with the Reproduction/ Developmental Toxicity Screening Test and Mammalian Erythrocyte Micronucleus Test via Inhalation with Roofing Asphalt Fume Condensate

Appendix C

Body Weight Individual Data

RTA051-02/00 Provantis7 - Production Date: 12/03/08 7:38 Page: 1

Bodyweights - Individual Bodyweights

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

Bodyweight (g) -----

Group	Sex	Day Animal	numbers 0	relative 7	to Star 11	t Date 14
1	m	1101 1102 1103 1104	241.7 281.2 285.2 269.3	250.7 295.0 294.5 291.3	257.9 302.3 308.5 302.5	261.5 312.2 316.4 311.9
		1105 Mean S.D. N	278.8 271.24 17.52	294.1 285.12 19.29	312.2 296.68 22.08	320.4 304.48 24.28

^{* =} Result to left has an associated comment or marker

Date: 12/03/08 7:38 Page: 2 RTA051-02/00 Provantis7 - Production

Bodyweights - Individual Bodyweights

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

Group	Sex	Day Animal	numbers 0	relative 7	to Star 11	t Date 14
2	m	2101 2102 2103 2104 2105	286.7 261.7 285.0 259.4 285.3	290.3 274.7 303.7 264.8 295.8	297.0 282.0 315.3 270.5 307.3	301.7 292.1 318.1 278.3 314.9
		Mean S.D. N	275.62 13.80 5	285.86 15.85 5	294.42 18.27 5	301.02 16.44 5

^{* =} Result to left has an associated comment or marker

Date: 12/03/08 7:38 Page: 3 RTA051-02/00 Provantis7 - Production

Bodyweights - Individual Bodyweights

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

				relative		
Group	Sex	Animal	0	7	11	14
3	m	3101 3102	269.9 266.7	265.3 268.9	266.6 279.1	272.5 285.0
		3103	252.9	245.7	247.4	253.9
		3104	327.2	334.1	343.3	353.2
		3105	290.8	284.4	291.0	294.7
		Mean	281.50	279.68	285.48	291.86
		S.D.	28.92	33.40	36.13	37.53
		N	5	5	5	5

^{* =} Result to left has an associated comment or marker

Date: 12/03/08 7:38 Page: 4 RTA051-02/00 Provantis7 - Production

Bodyweights - Individual Bodyweights

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

Group	Sex	Day Animal	numbers 0	relative 7	to Star 11	t Date 14
4	m	4101 4102 4103 4104 4105	280.6 271.3 293.0 299.3 240.5	267.5 252.3 272.4 293.1 219.8	274.5 252.1 267.0 296.4 222.0	276.7 251.7 270.0 297.9 225.4
		Mean S.D. N	276.94 23.08 5	261.02 27.28 5	262.40 27.67 5	264.34 27.33 5

^{* =} Result to left has an associated comment or marker

RTA051-02/00 Provantis7 - Production Date: 12/03/08 7:46 Page: 1

Bodyweights - Individual Bodyweights

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test and Mammalian E

				Day	numbers	relative	to Star	t Date		
Group	Sex	Animal	0	4	6	7	10	14	17	21
1	f	1201 1202 1203 1204	186.3 181.7 175.3 185.3	202.1 196.2 187.0 195.5	212.6 198.7 192.6 206.3	216.0 201.1 196.2 208.9	227.3 208.5 204.8 218.4	240.4 217.2 217.9 235.3	267.4 229.6 244.8 258.2	313.8 246.2 290.9 301.1
		1205	177.5	193.1	203.7	208.1	216.3	228.5	246.5	269.4
		Mean S.D.	181.22 4.78	194.78 5.47	202.78	206.06	215.06 8.81	227.86 10.32	249.30 14.34	284.28 26.78

^{* =} Result to left has an associated comment or marker

Date: 12/03/08 7:46 Page: 2 RTA051-02/00 Provantis7 - Production

Bodyweights - Individual Bodyweights

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

Group	Sex	Animal	0	Day 4	numbers 6	relative 7	to Star 10	t Date 14	17	21	
2	f	2201 2202 2203 2204 2205	181.2 176.1 170.4 180.9 184.0	191.8 189.6 170.9 197.3 196.7	201.3 204.6 186.8 207.7 207.2	201.6 197.3 186.4 205.2 204.6	211.7 205.2 195.7 212.7 209.9	223.1 199.2 212.1 228.2 226.7	239.8 200.2 237.4 249.3 244.9	267.4 207.6 270.3 281.4 278.8	
		Mean S.D. N	178.52 5.35 5	189.26 10.77 5	201.52 8.61 5	199.02 7.72 5	207.04 6.96 5	217.86 12.18 5	234.32 19.62 5	261.10 30.46 5	

^{* =} Result to left has an associated comment or marker

Date: 12/03/08 7:46 Page: 3 RTA051-02/00 Provantis7 - Production

Bodyweights - Individual Bodyweights

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test and Mammalian E

Group	Sex	Animal	0	Day 4	numbers 6	relative 7	to Star 10	t Date 14	17	21
3	f	3201 3202 3203 3204 3205 3206	181.2 186.6 175.7 175.1 188.1 187.5	191.2 198.5 188.2 182.5 208.0 205.0	200.1 207.9 197.3 187.5 214.0 210.2	198.3 205.5 199.0 189.1 212.7 212.5	206.8 207.6 204.7 199.1 220.2 214.7	215.8 217.9 208.7 212.0 229.2 227.2	237.5 238.8 228.5 235.7 247.0 239.8	272.7 275.4 261.4 271.5 284.8 255.4
		Mean S.D. N	182.37 5.93 6	195.57 9.96 6	202.83 9.78 6	202.85 9.18 6	208.85 7.50 6	218.47 8.20 6	237.88 6.01 6	270.20 10.44 6

^{* =} Result to left has an associated comment or marker

Date: 12/03/08 7:46 Page: 4 RTA051-02/00 Provantis7 - Production

Bodyweights - Individual Bodyweights

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

Group	Sex	Animal	0	Day 4	numbers 6	relative 7	to Star 10	t Date 14	17	21
4	f	4201 4202 4203 4204 4205 4206	190.1 190.7 176.4 193.9 178.1 189.7	204.9 204.7 189.1 209.5 188.6 215.2	211.3 216.8 195.8 217.1 197.7 220.3	212.0 214.8 190.1 215.0 187.6 213.0	211.7 210.9 195.4 206.8 182.1 217.6	212.9 217.5 197.2 205.9 178.3 217.5	223.2 226.6 211.9 218.8 179.4 233.5	247.7 249.5 229.7 245.7 188.0 257.9
		Mean S.D. N	186.48 7.32	202.00 10.88 6	209.83 10.56	205.42 12.91	204.08 13.06	204.88 15.16	215.57 19.15 6	236.42 25.44

^{* =} Result to left has an associated comment or marker

Fraunhofer ITEM Final Report 02N07533 page 68 of 126
Range Finding Testing for a Combined Repeated Dose Toxicity Study with the Reproduction/ Developmental Toxicity Screening Test and Mammalian Erythrocyte Micronucleus Test via Inhalation with Roofing Asphalt Fume Condensate

Appendix D

Food Consumption Individual Data

Fraunhofer ITEM Final Report 02N07533 page 69 of 126

Range Finding Testing for a Combined Repeated Dose Toxicity Study with the Reproduction/ Developmental Toxicity Screening Test and Mammalian Erythrocyte Micronucleus Test via Inhalation with Roofing Asphalt Fume Condensate

RTA071-01/00 Provantis7 - Production Date: 12/03/08 7:38 Page: 1

Food Consumption - Individual Food Consumption by Animal

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test and Mammalian E

Day numbers relative to Start Date

Group Sex	Animal	From: To:	0 7	7 11	11 14	Total 0 14
1 m	1101 1102 1103 1104 1105	 Mean	17.8000 19.7857 20.4571 21.3571 19.3714 19.75429	17.4750 19.2250 20.2500 21.2500 21.4750 19.93500	18.2333 20.5000 22.2667 21.7333 21.5333 20.85333	249.2000 276.9000 291.0000 299.7000 286.1000 280.58000
		S.D.	1.32570	1.63980	1.59871	19.38342

* = Result to left has an associated comment or marker

Fraunhofer ITEM Final Report 02N07533 page 70 of 126

Range Finding Testing for a Combined Repeated Dose Toxicity Study with the Reproduction/ Developmental Toxicity Screening Test and Mammalian Erythrocyte Micronucleus Test via Inhalation with Roofing Asphalt Fume Condensate

RTA071-01/00 Provantis7 - Production Date: 12/03/08 7:38 Page: 2

Food Consumption - Individual Food Consumption by Animal

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

Day numbers relative to Start Date

Group Sex	Animal	From: To:	0 7	7 11	11 14	Total 0 14
2 m	2101 2102 2103 2104 2105		17.7000 18.9571 21.5429 16.8714 19.9000	18.1500 18.9250 22.0750 16.8250 20.6750	18.8000 19.5000 22.3667 17.9000 21.2667	252.9000 266.9000 306.2000 239.1000 285.8000
		Mean S.D.	18.99429 1.83702	19.33000 2.07217	19.96667 1.82346	270.18000 26.53652

Fraunhofer ITEM Final Report 02N07533 page 71 of 126

Range Finding Testing for a Combined Repeated Dose Toxicity Study with the Reproduction/ Developmental Toxicity Screening Test and Mammalian Erythrocyte Micronucleus Test via Inhalation with Roofing Asphalt Fume Condensate

RTA071-01/00 Provantis7 - Production Date: 12/03/08 7:38 Page: 3

Food Consumption - Individual Food Consumption by Animal

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

Day numbers relative to Start Date

Group Sex	Animal	From: To:	0 7	7 11	11 14	Total 0 14
3 m	3101 3102 3103 3104 3105		17.0571 16.0143 14.8429 20.9000 16.4000	16.3250 17.2750 14.2500 21.0500 17.6750	17.4333 17.5667 16.5333 22.0333 17.6333	237.0000 233.9000 210.5000 296.6000 238.4000
		Mean S.D.	17.04286 2.30157	17.31500 2.47264	18.24000 2.16646	243.28000 31.89353

^{* =} Result to left has an associated comment or marker Food Consumption Units are g/animal/day. Total = Total consumption for the whole period (g/animal)

Fraunhofer ITEM Final Report 02N07533 page 72 of 126

Range Finding Testing for a Combined Repeated Dose Toxicity Study with the Reproduction/ Developmental Toxicity Screening Test and Mammalian Erythrocyte Micronucleus Test via Inhalation with Roofing Asphalt Fume Condensate

RTA071-01/00 Provantis7 - Production Date: 12/03/08 7:38 Page: 4

Food Consumption - Individual Food Consumption by Animal

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test and Mammalian E

Day numbers relative to Start Date

Group Sex	Animal	From: To:	0 7	7 11	11 14	Total 0 14
4 m	4101 4102 4103 4104 4105		13.8286 13.1857 12.7000 15.3714 10.6857	15.6750 15.6500 13.2250 17.1000 12.0500	15.2667 15.5000 14.4000 17.0000 13.7667	205.3000 201.4000 185.0000 227.0000 164.3000
		Mean S.D.	13.15429 1.70819	14.74000 2.04959	15.18667 1.22760	196.60000 23.45602

^{* =} Result to left has an associated comment or marker Food Consumption Units are g/animal/day. Total = Total consumption for the whole period (g/animal)

Fraunhofer ITEM Final Report 02N07533 page 73 of 126

Range Finding Testing for a Combined Repeated Dose Toxicity Study with the Reproduction/ Developmental Toxicity Screening Test and Mammalian Erythrocyte Micronucleus Test via Inhalation with Roofing Asphalt Fume Condensate

RTA071-01/00 Provantis7 - Production Date: 12/03/08 7:38 Page: 1

Food Consumption - Individual Food Consumption by Animal

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

C Reproduceron, potential 1987 et al 1987 et

Day numbers relative to Start Date

Group Sex	Animal	From: To:	0 4	4 6	6 7	7 10	10 14	14 17	17 21	Total 0 21
1 f	1201 1202 1203 1204 1205		17.9250 18.6000 17.4750 17.4750 17.4500	17.8500 14.8000 14.6500 14.9000 16.4500	16.8000 15.1000 10.8000 11.3000 18.9000	18.2000 17.7333 17.1667 18.0667 17.0000	19.3750 18.0500 18.2000 19.2000 18.4500	21.2667 18.9000 20.2333 20.7667 22.2000	21.6000 21.1750 22.3750 21.5250 20.0500	406.500 385.900 384.500 390.400 393.200
		Mean S.D.	17.78500 0.49705	15.73000 1.39041	14.58000 3.49671	17.63333 0.53333	18.65500 0.59802	20.67333	21.34500 0.84620	392.1000 8.77012

* - Decult to left has an accepiated comment on marken

 $Food \ Consumption \ Units \ are \ g/animal/day. \ Total = Total \ consumption \ for \ the \ whole \ period \ (g/animal)$

^{* =} Result to left has an associated comment or marker

RTA071-01/00 Provantis7 - Production Date: 12/03/08 7:38 Page: 2

Food Consumption - Individual Food Consumption by Animal

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test and Mammalian E

Day numbers relative to Start Date

Group Sex	Animal	From: To:	0 4	4 6	6 7	7 10	10 14	14 17	17 21	Total 0 21
2 f	2201 2202 2203 2204 2205		16.1250 15.0750 10.8500 17.4750 17.0500	15.7500 16.8000 19.0500 16.6000 17.1500	15.4000 12.4000 15.1000 13.4000 11.7000	16.9333 16.0667 16.1000 16.0333 15.1000	17.7250 12.0750 18.0750 18.2500 18.4250	20.3333 13.2333 20.4667 19.9333 20.5333	20.3500 13.6500 18.7500 17.6500 18.6750	375.500 297.100 353.600 368.000 369.500
		Mean S.D.	15.31500 2.66110	17.07000 1.22096	13.60000 1.62635	16.04667 0.64919	16.91000 2.71521	18.90000 3.17630	17.81500 2.52064	352.7400 32.12605

RTA071-01/00 Provantis7 - Production Date: 12/03/08 7:38 Page: 3

Food Consumption - Individual Food Consumption by Animal

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test and Mammalian E

Day numbers relative to Start Date

Group Sex	Animal	From: To:	0 4	4 6	6 7	7 10	10 14	14 17	17 21	Total 0 21
3 f	3201 3202 3203 3204 3205 3206		16.9750 17.1250 15.6500 15.5500 19.6500 15.4500	17.0000 18.7000 17.9000 12.1500 16.1500 16.4500	14.2000 14.6000 12.7000 12.8000 14.7000 15.6000	15.4667 14.0000 14.0000 14.7667 16.0667 14.3667	17.2250 16.7250 14.3250 17.0500 18.9250 16.6500	19.5000 19.7667 17.3667 18.8000 18.4333 18.7333	18.3750 18.8500 17.9750 17.1500 19.4250 18.7500	363.400 364.100 334.400 336.800 382.500 351.200
		Mean S.D.	16.73333 1.60870	16.39167 2.28154	14.10000 1.14193	14.77778 0.83843	16.81667 1.47722	18.76667 0.84984	18.42083 0.78953	355.4000 18.32321

* = Result to left has an associated comment or marker

RTA071-01/00 Provantis7 - Production Date: 12/03/08 7:38 Page: 4

Food Consumption - Individual Food Consumption by Animal

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test and Mammalian E

Day numbers relative to Start Date

Group Sex	Animal	From: To:	0 4	4 6	6 7	7 10	10 14	14 17	17 21	Total 0 21
4 f	4201 4202 4203 4204 4205 4206		18.5000 18.4250 16.6250 18.3250 13.8500 16.5000	17.4500 19.8500 17.0000 16.7500 16.3500 19.1000	14.0000 13.0000 10.6000 14.3000 5.8000 10.9000	12.5667 10.9000 12.5333 8.9667 6.3333 13.2667	10.8250 11.0750 10.7750 10.9250 8.3750 11.8000	12.5000 11.0667 13.0667 13.0667 11.2000 22.5333	13.5750 12.5250 13.1250 14.4500 11.6750 16.3750	295.700 286.700 283.500 288.700 226.700 335.200
		Mean S.D.	17.03750 1.80781	17.75000 1.40321	11.43333 3.16143	10.76111 2.66545	10.62917 1.16602	13.90556 4.31743	13.62083 1.64366	286.0833 34.77128

Fraunhofer ITEM Final Report 02N07533 page 77 of 126
Range Finding Testing for a Combined Repeated Dose Toxicity Study with the Reproduction/ Developmental Toxicity Screening Test and Mammalian Erythrocyte Micronucleus Test via Inhalation with Roofing Asphalt Fume Condensate

Appendix E

Organ Weights Individual Data

RTA052-02/00 Provantis7 - Production Date: 27/03/08 8:31 Page: 1

Generalised Results - Animals by Parameter - Fixed Time

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

			Kidney Wt left g	Kidney Wt right g	Liver Weight g	Thymus Weight g	Testis Wt left g	Testis Wt right g
Group	Sex	Animal						
1	m	1101 1102 1103 1104 1105 Mean S.D.	1.07 1.17 1.34 1.16 1.29	1.02 1.20 1.33 1.20 1.26 	11.35 12.30 12.92 12.96 14.17 12.740 1.031	0.33 0.47 0.39 0.57 0.40 0.432 0.092	1.74 1.65 1.60 1.73 1.57 1.658 0.076	1.74 1.67 1.65 1.71 1.50
		N	5	5	5	5	5	5

^{* =} Result to left has an associated comment or marker

Date: 27/03/08 8:31 Page: 2 RTA052-02/00 Provantis7 - Production

Generalised Results - Animals by Parameter - Fixed Time

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test and Mammalian E

Group	Sex	Animal	Kidney Wt left g	Kidney Wt right g	Liver Weight g	Thymus Weight g	Testis Wt left g	Testis Wt right g
2	m	2101 2102 2103 2104 2105	1.18 1.17 1.35 1.14 1.22	1.10 1.23 1.28 1.18 1.37	12.96 13.91 13.96 12.11 13.61	0.34 0.34 0.60 0.60 0.51	1.62 1.64 1.52 1.64 1.75	1.59 1.62 1.46 1.68 1.63
		Mean S.D. N	1.212 0.082	1.232 0.102 5	13.310 0.780 5	0.478 0.131 5	1.634 0.082 5	1.596 0.083

^{* =} Result to left has an associated comment or marker

Date: 27/03/08 8:31 Page: 3 RTA052-02/00 Provantis7 - Production

Generalised Results - Animals by Parameter - Fixed Time

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test and Mammalian E

Group	Sex	Animal	Kidney Wt left g	Kidney Wt right g	Liver Weight g	Thymus Weight g	Testis Wt left g	Testis Wt right g
3	m	3101 3102 3103 3104 3105	1.02 1.05 1.07 1.35 1.19	1.09 1.07 1.07 1.44 1.23	11.40 12.98 10.00 15.99 13.77	0.36 0.32 0.25 0.47 0.47	1.65 1.52 1.58 1.68 1.43	1.65 1.50 1.51 1.67 1.48
		Mean S.D.	1.136 0.136	1.180 0.160	12.828 2.288	0.374 0.096	1.572 0.101	1.562 0.090

^{* =} Result to left has an associated comment or marker

Date: 27/03/08 8:31 Page: 4 RTA052-02/00 Provantis7 - Production

Generalised Results - Animals by Parameter - Fixed Time

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test and Mammalian E

Group	Sex	Animal	Kidney Wt left g	Kidney Wt right g	Liver Weight g	Thymus Weight g	Testis Wt left g	Testis Wt right g
4	m	4101 4102 4103 4104 4105	1.06 1.00 1.13 1.34 0.92	1.14 0.98 1.18 1.36 0.93	11.22 10.69 11.26 12.54 9.04	0.27 0.30 0.26 0.24 0.15	1.36 1.73 1.66 1.64 1.39	1.33 1.76 1.61 1.64 1.36
		Mean S.D.	1.090 0.160	1.118 0.171	10.950 1.266	0.244 0.057	1.556 0.169	1.540 0.187

^{* =} Result to left has an associated comment or marker

Date: 27/03/08 8:32 Page: 1 RTA052-02/00 Provantis7 - Production

Generalised Results - Animals by Parameter - Fixed Time

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test and Mammalian E

Group	Sex	Animal	Kidney Wt left g	Kidney Wt right g	Liver Weight g	Thymus Weight g	Ovary Wt left g	Ovary Wt right g
1	f	1201 1202 1203 1204 1205	0.81 0.86 0.69 0.76 0.84	0.82 0.92 0.67 0.80 0.86	11.79 10.70 11.31 9.84 11.53	0.21 0.29 0.20 0.20 0.26	0.075 0.067 0.051 0.062 0.077	0.079 0.068 0.093 0.089 0.083
		Mean S.D.	0.792 0.068	0.814 0.093	11.034 0.780	0.232 0.041	0.0664 0.0105	0.0824 0.0097

^{* =} Result to left has an associated comment or marker

Date: 27/03/08 8:32 Page: 2 RTA052-02/00 Provantis7 - Production

Generalised Results - Animals by Parameter - Fixed Time

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test and Mammalian E

Group	Sex	Animal	Kidney Wt left g	Kidney Wt right g	Liver Weight g	Thymus Weight g	Ovary Wt left g	Ovary Wt right g
2	f	2201 2202 2203 2204 2205 Mean S.D.	0.70 0.79 0.81 0.69 0.76	0.73 0.80 0.83 0.69 0.81	9.26 8.27 10.80 8.77 10.41 9.502 1.075	0.27 0.28 0.23 0.22 0.25 0.250 0.025	0.052 0.068 0.064 0.068 0.085 0.0674 0.0118	0.091 0.061 0.053 0.068 0.068
		N	5	5	5	5	5	5

^{* =} Result to left has an associated comment or marker

Date: 27/03/08 8:32 Page: 3 RTA052-02/00 Provantis7 - Production

Generalised Results - Animals by Parameter - Fixed Time

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test and Mammalian E

Group	Sex	Animal	Kidney Wt left g	Kidney Wt right g	Liver Weight g	Thymus Weight g	Ovary Wt left g	Ovary Wt right g
3	f	3201 3202 3203 3204 3205 3206	0.74 0.79 0.69 0.77 0.83 0.87	0.83 0.86 0.71 0.79 0.86 1.05	10.31 10.24 9.76 10.38 10.86 9.78	0.13 0.17 0.19 0.18 0.18 0.21	0.079 0.084 0.063 0.065 0.059 0.075	0.073 0.059 0.059 0.062 0.081 0.050
		Mean S.D. N	0.782 0.064	0.850 0.113	10.222 0.412	0.177 0.027	0.0708 0.0099	0.0640 0.0111

^{* =} Result to left has an associated comment or marker

Date: 27/03/08 8:32 Page: 4 RTA052-02/00 Provantis7 - Production

Generalised Results - Animals by Parameter - Fixed Time

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test and Mammalian E

Group	Sex	Animal	Kidney Wt left g	Kidney Wt right g	Liver Weight g	Thymus Weight g	Ovary Wt left g	Ovary Wt right g
4	f	4201 4202 4203 4204 4205 4206	0.75 0.69 0.74 0.77 0.80 0.76	0.78 0.67 0.76 0.77 0.83 0.80	8.82 10.04 9.54 10.09 8.07 9.50	0.09 0.14 0.09 0.08 0.29 0.16	0.070 0.065 0.060 0.084 0.043 0.058	0.063 0.060 0.067 0.055 0.045 0.072
		Mean S.D. N	0.752 0.037 6	0.768 0.054 6	9.343 0.775 6	0.142 0.079	0.0633 0.0136	0.0603 0.0095

^{* =} Result to left has an associated comment or marker

Fraunhofer ITEM Final Report 02N07533 page 86 of 126
Range Finding Testing for a Combined Repeated Dose Toxicity Study with the Reproduction/ Developmental Toxicity Screening Test and Mammalian Erythrocyte Micronucleus Test via Inhalation with Roofing Asphalt Fume Condensate

Appendix F

Organ Weight Ratios / Body Weight Individual Data

RTA052-02/00 Provantis7 - Production Date: 27/03/08 8:33 Page: 1

Generalised Results - Animals by Parameter - Fixed Time

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with th e Reproduction/Developmental Toxicity Screening Test and Mammalian E

Group	Sex	Animal	Terminal Bweight g	L.Kidney /Bodywt g/kg	R.Kidney /Bodywt g/kg	Liver /Bodywt g/kg	Thym. /Bodywt g/kg	L.Testis /Bodywt g/kg	R.Testis /Bodywt g/kg
1	m	1101 1102 1103 1104 1105	258.3 308.1 311.5 304.5 315.2	4.1425 3.7975 4.3018 3.8095 4.0926	3.9489 3.8948 4.2697 3.9409 3.9975	43.9412 39.9221 41.4767 42.5616 44.9556	1.2776 1.5255 1.2520 1.8719 1.2690	6.7364 5.3554 5.1364 5.6814 4.9810	6.7364 5.4203 5.2970 5.6158 4.7589
		Mean S.D. N	299.52 23.38	4.02878 0.21973	4.01036 0.14948	42.57144 1.98608	1.43920 0.26683	5.57812 0.69885	5.56568 0.72755 5

^{* =} Result to left has an associated comment or marker

Date: 27/03/08 8:33 Page: 2 RTA052-02/00 Provantis7 - Production

Generalised Results - Animals by Parameter - Fixed Time

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test and Mammalian E

Group	Sex	Animal	Terminal Bweight g	L.Kidney /Bodywt g/kg	R.Kidney /Bodywt g/kg	Liver /Bodywt g/kg	Thym. /Bodywt g/kg	L.Testis /Bodywt g/kg	R.Testis /Bodywt g/kg
2	m 2101 2102 2103 2104 2105		300.3 3.9294 289.7 4.0387 314.3 4.2953 276.5 4.1230 311.7 3.9140		3.6630 4.2458 4.0725 4.2676 4.3953	43.1568 48.0152 44.4162 43.7975 43.6638	1.1322 1.1736 1.9090 2.1700 1.6362	5.3946 5.6610 4.8361 5.9313 5.6144	5.2947 5.5920 4.6452 6.0759 5.2294
		Mean S.D.	298.50 15.72	4.06008 0.15665	4.12884 0.28466	44.60990 1.95577	1.60420 0.45339	5.48748 0.41113	5.36744 0.52400

^{* =} Result to left has an associated comment or marker

Date: 27/03/08 8:33 Page: 3 RTA052-02/00 Provantis7 - Production

Generalised Results - Animals by Parameter - Fixed Time

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test and Mammalian E

Group	Sex	Animal	Terminal Bweight g	L.Kidney /Bodywt g/kg	R.Kidney /Bodywt g/kg	Liver /Bodywt g/kg	Thym. /Bodywt g/kg	L.Testis /Bodywt g/kg	R.Testis /Bodywt g/kg
3	m	3101 3102 3103 3104 3105	270.6 282.5 252.2 350.4 292.0	3.7694 3.7168 4.2427 3.8527 4.0753	4.0281 3.7876 4.2427 4.1096 4.2123	42.1286 45.9469 39.6511 45.6336 47.1575	1.3304 1.1327 0.9913 1.3413 1.6096	6.0976 5.3805 6.2649 4.7945 4.8973	6.0976 5.3097 5.9873 4.7660 5.0685
		Mean S.D. N	289.54 37.12	3.93138 0.22142 5	4.07606 0.18232	44.10354 3.11409	1.28106 0.23451	5.48696 0.67391	5.44582 0.57902

^{* =} Result to left has an associated comment or marker

Date: 27/03/08 8:33 Page: 4 RTA052-02/00 Provantis7 - Production

Generalised Results - Animals by Parameter - Fixed Time

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test and Mammalian E

Group	Sex	Animal	Terminal Bweight g	L.Kidney /Bodywt g/kg	R.Kidney /Bodywt g/kg	Liver /Bodywt g/kg	Thym. /Bodywt g/kg	L.Testis /Bodywt g/kg	R.Testis /Bodywt g/kg
4	m	4101 4102 4103 4104 4105	270.9 247.6 266.9 293.6 221.3	3.9129 4.0388 4.2338 4.5640 4.1573	4.2082 3.9580 4.4211 4.6322 4.2024	41.4175 43.1745 42.1881 42.7112 40.8495	0.9967 1.2116 0.9741 0.8174 0.6778	5.0203 6.9871 6.2196 5.5858 6.2811	4.9096 7.1082 6.0322 5.5858 6.1455
		Mean S.D. N	260.06 27.14	4.18136 0.24604	4.28438 0.25432	42.06816 0.94345	0.93552 0.20114	6.01878 0.74686	5.95626 0.80642

^{* =} Result to left has an associated comment or marker

Date: 27/03/08 8:34 Page: 1 RTA052-02/00 Provantis7 - Production

Generalised Results - Animals by Parameter - Fixed Time

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test and Mammalian E

Group	Sex	Animal	Terminal Bweight g	L.Kidney /Bodywt g/kg	R.Kidney /Bodywt g/kg	Liver /Bodywt g/kg	Thym. /Bodywt g/kg	L.Ovary /Bodywt g/kg	R.Ovary /Bodywt g/kg
1	f	1201 1202 1203 1204 1205	309.4 242.7 286.8 297.3 264.6	2.6180 3.5435 2.4059 2.5563 3.1746	2.6503 3.7907 2.3361 2.6909 3.2502	38.1060 44.0874 39.4351 33.0979 43.5752	0.6787 1.1949 0.6974 0.6727 0.9826	0.24240 0.27606 0.17782 0.20854 0.29101	0.25533 0.28018 0.32427 0.29936 0.31368
		Mean S.D. N	280.16 26.64	2.85966 0.48040	2.94364 0.57674	39.66032 4.48490	0.84526 0.23478	0.239166 0.046799	0.294564 0.027464

^{* =} Result to left has an associated comment or marker

Date: 27/03/08 8:34 Page: 2 RTA052-02/00 Provantis7 - Production

Generalised Results - Animals by Parameter - Fixed Time

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test and Mammalian E

Group	Sex	Animal	Terminal Bweight g	L.Kidney /Bodywt g/kg	R.Kidney /Bodywt g/kg	Liver /Bodywt g/kg	Thym. /Bodywt g/kg	L.Ovary /Bodywt g/kg	R.Ovary /Bodywt g/kg
2	f	2201 2202 2203 2204 2205	261.9 204.3 269.5 277.1 275.4	2.6728 3.8669 3.0056 2.4901 2.7596	2.7873 3.9158 3.0798 2.4901 2.9412	35.3570 40.4797 40.0742 31.6492 37.7996	1.0309 1.3705 0.8534 0.7939 0.9078	0.19855 0.33284 0.23748 0.24540 0.30864	0.34746 0.29858 0.19666 0.24540 0.24691
		Mean S.D.	257.64 30.41	2.95900 0.54037	3.04284 0.53492	37.07194 3.65729	0.99130 0.22930	0.264582 0.054916	0.267002 0.057639

^{* =} Result to left has an associated comment or marker

Date: 27/03/08 8:34 Page: 3 RTA052-02/00 Provantis7 - Production

Generalised Results - Animals by Parameter - Fixed Time

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test and Mammalian E

Group	Sex	Animal	Terminal Bweight g	L.Kidney /Bodywt g/kg	R.Kidney /Bodywt g/kg	Liver /Bodywt g/kg	Thym. /Bodywt g/kg	L.Ovary /Bodywt g/kg	R.Ovary /Bodywt g/kg
3	f	3201 3202 3203 3204 3205 3206	271.0 271.2 257.2 270.2 283.1 252.9	2.7306 2.9130 2.6827 2.8497 2.9318 3.4401	3.0627 3.1711 2.7605 2.9238 3.0378 4.1518	38.0443 37.7581 37.9471 38.4160 38.3610 38.6714	0.4797 0.6268 0.7387 0.6662 0.6358 0.8304	0.29151 0.30973 0.24495 0.24056 0.20841 0.29656	0.26937 0.21755 0.22939 0.22946 0.28612 0.19771
		Mean S.D. N	267.60 10.92	2.92465 0.27118	3.18462 0.49395 6	38.19965 0.34008	0.66293 0.11782 6	0.265287 0.039751 6	0.238267 0.033129

^{* =} Result to left has an associated comment or marker

Date: 27/03/08 8:34 Page: 4 RTA052-02/00 Provantis7 - Production

Generalised Results - Animals by Parameter - Fixed Time

07533 - Range Finding Testingfor a Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test and Mammalian E

Group	Sex	Animal	Terminal Bweight g	L.Kidney /Bodywt g/kg	R.Kidney /Bodywt g/kg	Liver /Bodywt g/kg	Thym. /Bodywt g/kg	L.Ovary /Bodywt g/kg	R.Ovary /Bodywt g/kg
4	f	4201 4202 4203 4204 4205 4206	242.7 250.6 229.6 245.6 186.5 253.5	3.0902 2.7534 3.2230 3.1352 4.2895 2.9980	3.2138 2.6736 3.3101 3.1352 4.4504 3.1558	36.3412 40.0638 41.5505 41.0831 43.2708 37.4753	0.3708 0.5587 0.3920 0.3257 1.5550 0.6312	0.28842 0.25938 0.26132 0.34202 0.23056 0.22880	0.25958 0.23943 0.29181 0.22394 0.24129 0.28402
		Mean S.D. N	234.75 25.05	3.24822 0.53481	3.32315 0.59465 6	39.96412 2.60893	0.63890 0.46404 6	0.268417 0.042314	0.256678 0.026819

^{* =} Result to left has an associated comment or marker

Fraunhofer ITEM Final Report 02N07533 page 95 of 126
Range Finding Testing for a Combined Repeated Dose Toxicity Study with the Reproduction/ Developmental Toxicity Screening Test and Mammalian Erythrocyte Micronucleus Test via Inhalation with Roofing Asphalt Fume Condensate

Appendix G

Cesarean Section Individual Data

Fraunnoter LLEM
Final Report 02N07533
page 96 of 126
Range Finding Testing for a Combined Repeated Dose Toxicity Study with the Reproduction/ Developmental Toxicity Screening Test and Mammalian Erythrocyte Micronucleus Test via Inhalation with Roofing Asphalt Fume Condensate

27-MAR-2008 11:40

Study No.: 02N07533

API

Range Finding Testing for a Combined Repeated Dose Toxicity Study with Roofing Asphalt Fume Condensate

INDIVIDUAL FEMALE REPRODUCTION DATA AND MEAN FETAL WEIGHT DATA

Clean Air

ANIMAL#	CORPORA LUTEA	%PREIMPL. LOSS	IMPLANT SITES	FE LIVE	TUSES (n)	EAD %	EARLY	RESORP LATE		TAL %		EX FEMALE	AVERAG MALES	GE FETAL BO FEMALES	DY WEIGHT LITTER
1201	16	18.8	13	13	0	0.0	0	0	0	0.0	6	7	4.7	4.6	4.7
1202	7	71.4	2	2	0	0.0	0	0	0	0.0	1	1	5.4	4.9	5.2
1203	12	0.0	12	12	0	0.0	0	0	0	0.0	6	6	5.0	4.7	4.9
1204	18	22.2	14	13	0	0.0	0	1	1	7.1	8	5	4.6	4.6	4.6
1205	11	45.5	6	6	0	0.0	0	0	0	0.0	3	3	4.9	4.6	4.8
MEAN S.D. N	12.8 4.32 5	31.6 27.52 5	9.4 5.18 5	9.2 4.97 5	0.0 0.00 5	0.0 0.00 5	0.0 0.00 5	0.2 0.45 5	0.2 0.45 5	1.4 3.19 5	4.8 2.77 5	4.4 2.41 5	4.9 0.30 5	4.7 0.13 5	4.8 0.21 5

Fraunnoter ITEM Final Report 02N07533 page 97 of 126
Range Finding Testing for a Combined Repeated Dose Toxicity Study with the Reproduction/ Developmental Toxicity Screening Test and Mammalian Erythrocyte Micronucleus Test via Inhalation with Roofing Asphalt Fume Condensate

27-MAR-2008 11:40

Study No.: 02N07533

API

Range Finding Testing for a Combined Repeated Dose Toxicity Study with Roofing Asphalt Fume Condensate

INDIVIDUAL FEMALE REPRODUCTION DATA AND MEAN FETAL WEIGHT DATA

Low Dose

ANIMAL#	CORPORA LUTEA	%PREIMPL. LOSS	IMPLANT SITES	FE LIVE	TUSES D (n)	EAD %	EARLY	RESORP LATE)TAL %		EX FEMALE	AVERAG MALES	E FETAL BO	DY WEIGHT LITTER
2201 2202	7 NP	0.0	7	7	0	0.0	0	0	0	0.0	4	3	5.2	4.8	5.1
2203	12	16.7	10	10	0	0.0	0	0	0	0.0	6	4	4.9	4.4	4.7
2204	15	13.3	13	13	0	0.0	0	0	0	0.0	9	4	4.5	4.3	4.4
2205	11	9.1	10	9	0	0.0	1	0	1	10.0	4	5	4.7	4.6	4.6
MEAN S.D. N	11.3 3.30 4	9.8 7.22 4	10.0 2.45 4	9.8 2.50 4	0.0 0.00 4	0.0 0.00 4	0.3 0.50 4	0.0 0.00 4	0.3 0.50 4	2.5 5.00 4	5.8 2.36 4	4.0 0.82 4	4.8 0.33 4	4.5 0.24 4	4.7 0.27 4

NP=NOT PREGNANT

Fraunhofer ITEM Final Report 02N07533 page 98 of 126
Range Finding Testing for a Combined Repeated Dose Toxicity Study with the Reproduction/ Developmental Toxicity Screening Test and Mammalian Erythrocyte Micronucleus Test via Inhalation with Roofing Asphalt Fume Condensate

27-MAR-2008 11:40

Study No.: 02N07533

API

Range Finding Testing for a Combined Repeated Dose Toxicity Study with Roofing Asphalt Fume Condensate

INDIVIDUAL FEMALE REPRODUCTION DATA AND MEAN FETAL WEIGHT DATA

Mid Dose

ANIMAL#	CORPORA LUTEA	%PREIMPL. LOSS	IMPLANT SITES	FI LIVI	TUSES D (n)	EAD %	EARLY	RESORP LATE		OTAL %		EX FEMALE	AVERAC MALES	GE FETAL BO FEMALES	DY WEIGHT LITTER
3201	12	0.0	12	12	0	0.0	0	0	0	0.0	 7	5	 4.1	4.2	4.2
3202	13	15.4	11	11	0	0.0	0	0	0	0.0	5	6	4.6	4.3	4.5
3203	12	16.7	10	9	0	0.0	1	0	1	10.0	3	6	5.0	4.8	4.8
3204	13	7.7	12	12	0	0.0	0	0	0	0.0	7	5	4.5	4.2	4.4
3205	13	23.1	10	10	0	0.0	0	0	0	0.0	4	6	5.0	4.5	4.7
3206	11	54.5	5	5	0	0.0	0	0	0	0.0	3	2	4.7	4.6	4.6
MEAN	12.3	19.6	10.0	9.8	0.0	0.0	0.2	0.0	0.2	1.7	4.8	5.0	4.6	4.4	4.5
S.D.	0.82	18.90	2.61	2.64	0.00	0.00	0.41	0.00	0.41	4.08	1.83	1.55	0.32	0.21	0.24
N	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6

Fraunnoter LLEM
Final Report 02N07533
page 99 of 126
Range Finding Testing for a Combined Repeated Dose Toxicity Study with the Reproduction/ Developmental Toxicity Screening Test and Mammalian Erythrocyte Micronucleus Test via Inhalation with Roofing Asphalt Fume Condensate

27-MAR-2008 11:40

Study No.: 02N07533

API

Range Finding Testing for a Combined Repeated Dose Toxicity Study with Roofing Asphalt Fume Condensate

INDIVIDUAL FEMALE REPRODUCTION DATA AND MEAN FETAL WEIGHT DATA

High Dose

ANIMAL#	CORPORA LUTEA	%PREIMPL. LOSS	IMPLANT SITES	FE LIVE	TUSES D (n)	EAD %	EARLY	RESORP LATE		TAL %		EX FEMALE	AVERAG MALES	E FETAL BO FEMALES	DDY WEIGHT LITTER
4201	13	0.0	13	13	0	0.0	0	0	0	0.0	10	3	2.3	2.2	2.3
4202	11	0.0	11	11	0	0.0	0	0	0	0.0	6	5	3.3	3.0	3.1
4203	13	23.1	10	10	0	0.0	0	0	0	0.0	6	4	3.5	3.5	3.5
4204 4205	14 NP	7.1	13	13	0	0.0	0	0	0	0.0	11	2	2.6	2.4	2.6
4206	13	0.0	13	12	0	0.0	0	1	1	7.7	7	5	3.2	3.1	3.2
MEAN S.D. N	12.8 1.10 5	6.0 10.01 5	12.0 1.41 5	11.8 1.30 5	0.0 0.00 5	0.0 0.00 5	0.0 0.00 5	0.2 0.45 5	0.2 0.45 5	1.5 3.44 5	8.0 2.35 5	3.8 1.30 5	3.0 0.52 5	2.8 0.54 5	2.9 0.51 5

NP=NOT PREGNANT

Appendix H

Gravid Uterine Weight and Net Body Weight Change Individual Data

27-MAR-2008 11:40

Study No.: 02N07533

API

Range Finding Testing for a Combined Repeated Dose Toxicity Study with Roofing Asphalt Fume Condensate

INDIVIDUAL GRAVID UTERINE WEIGHT AND NET BODY WEIGHT CHANGE (GRAMS)

Clean Air

ANIMAL#	UTERUS WEIGHT	ADJUSTED WEIGHT	NET WEIGHT CHANGE FROM DAY 6	WEIGHT CHANGE FROM DAY 6
1201	79	235	22	101
1202	15	231	33	48
1203	74	217	25	98
1204	75	226	20	95
1205	40	229	25	66
MEAN	57.	228.	25.	82.
S.D.	28.0	6.7	4.8	23.7
N	5	5	5	5

ADJUSTED WEIGHT = TERMINAL BODY WEIGHT MINUS GRAVID UTERINE WEIGHT
NET WEIGHT CHANGE FROM DAY 6 = TERMINAL CORRECTED BODY WEIGHT MINUS DAY 6 BODY WEIGHT

27-MAR-2008 11:40

Study No.: 02N07533

API

Range Finding Testing for a Combined Repeated Dose Toxicity Study with Roofing Asphalt Fume Condensate

INDIVIDUAL GRAVID UTERINE WEIGHT AND NET BODY WEIGHT CHANGE (GRAMS)

Low Dose

ANIMAL#	UTERUS WEIGHT	ADJUSTED WEIGHT	NET WEIGHT CHANGE FROM DAY 6	WEIGHT CHANGE FROM DAY 6	
2201	46	221	20	66	
2202x N	IP 0	207	3	3	
2203	62	208	21	83	
2204	73	208	1	74	
2205	53	225	18	72	
MEAN	59.	216.	15.	74.	
S.D.	11.6	8.9	9.7	7.3	
N	4	4	4	4	

ADJUSTED WEIGHT = TERMINAL BODY WEIGHT MINUS GRAVID UTERINE WEIGHT
NET WEIGHT CHANGE FROM DAY 6 = TERMINAL CORRECTED BODY WEIGHT MINUS DAY 6 BODY WEIGHT

NP=NOT PREGNANT x=EXCLUDED FROM MEAN

27-MAR-2008 11:40

Study No.: 02N07533

API

Range Finding Testing for a Combined Repeated Dose Toxicity Study with Roofing Asphalt Fume Condensate

INDIVIDUAL GRAVID UTERINE WEIGHT AND NET BODY WEIGHT CHANGE (GRAMS)

Μi	d	Dose
1.1	u	DUSE

ANIMAL#	UTERUS WEIGHT	ADJUSTED WEIGHT	NET WEIGHT CHANGE FROM DAY 6	WEIGHT CHANGE FROM DAY 6	
3201	67	206	6	73	
3202	64	212	4	68	
3203	56	205	8	64	
3204	71	200	13	84	
3205	61	224	10	71	
3206	32	223	13	45	
MEAN	58.	212.	9.	67.	
S.D.	13.9	10.0	3.8	12.8	
N	6	6	6	6	

ADJUSTED WEIGHT = TERMINAL BODY WEIGHT MINUS GRAVID UTERINE WEIGHT
NET WEIGHT CHANGE FROM DAY 6 = TERMINAL CORRECTED BODY WEIGHT MINUS DAY 6 BODY WEIGHT

27-MAR-2008 11:40

Study No.: 02N07533

API

Range Finding Testing for a Combined Repeated Dose Toxicity
Study with Roofing Asphalt Fume Condensate

INDIVIDUAL GRAVID UTERINE WEIGHT AND NET BODY WEIGHT CHANGE (GRAMS)

High Dose

ANIMAL#	UTERUS WEIGHT	ADJUSTED WEIGHT	NET WEIGHT CHANGE FROM DAY 6	WEIGHT CHANGE FROM DAY 6	
4201	43	205	-7	36	
4202	47	202	-14	33	
4203	47	183	-13	34	
4204	48	198	-19	29	
	IP 0	188	-10	-10	
4206	53	205	-15	38	
MEAN	48.	199.	-14.	34.	
S.D.	3.3	9.4	4.6	3.5	
N	5	5	5	5	

ADJUSTED WEIGHT = TERMINAL BODY WEIGHT MINUS GRAVID UTERINE WEIGHT
NET WEIGHT CHANGE FROM DAY 6 = TERMINAL CORRECTED BODY WEIGHT MINUS DAY 6 BODY WEIGHT

NP=NOT PREGNANT x=EXCLUDED FROM MEAN

unhofer ITEM Final Report 02N07533 page 105 of 126
Range Finding Testing for a Combined Repeated Dose Toxicity Study with the Reproduction/ Developmental Toxicity Screening Test and Mammalian Erythrocyte Micronucleus Test via Inhalation with Roofing Asphalt Fume Condensate

Apppendix I

Histopathology Individual Data

Page: 1
Date: 9-APR-2008 Time:09:16

FRAUNHOFER INSTITUTE OF TOXICOLOGY AND EXPERIMENTAL MEDICINE Individual Animal Listing

STUDY: 02N07533

Dose Group: Clean Air Control Treatment: CleanAir Sex: Males

Animal Ref Findings

001101 Killed Necropsied on Day: 14

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

NASAL and PARANASAL CAVITIES, LARYNX, TRACHEA, LUNGS, LUNG ASSOCIATED LYMPH NODES, PHARYNX (LARYNGO-)

001102 Killed Necropsied on Day: 14

NASAL and PARANASAL CAVITIES:

Very slight focal submucosal mineralisation

Very slight multifocal submucosal inflammatory cell

infiltration

LARYNX :

Very slight focal submucosal mononuclear cell

infiltration

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

TRACHEA, LUNGS, LUNG ASSOCIATED LYMPH NODES, PHARYNX

(LARYNGO-)

001103 Killed Necropsied on Day: 14

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

Killed

NASAL and PARANASAL CAVITIES, LARYNX, TRACHEA, LUNGS, LUNG ASSOCIATED LYMPH NODES, PHARYNX (LARYNGO-)

001104 LARYNX :

Very slight focal submucosal inflammatory cell

Necropsied on Day: 14

infiltration

Very slight focal epithelial alteration : due to

aspiration of plant fibres

LUNGS:

Very slight focal alveolar haemorrhage

Very slight focal alveolar inflammatory cell

infiltration

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

NASAL and PARANASAL CAVITIES, TRACHEA, LUNG ASSOCIATED

LYMPH NODES, PHARYNX (LARYNGO-)

Page: 2
Date: 9-APR-2008 Time:09:16

FRAUNHOFER INSTITUTE OF TOXICOLOGY AND EXPERIMENTAL MEDICINE Individual Animal Listing

STUDY: 02N07533

Dose Group: Clean Air Control Treatment: CleanAir Sex: Males

Animal Ref Findings

001105 Killed Necropsied on Day: 14

NASAL and PARANASAL CAVITIES:

Slight multifocal submucosal inflammatory cell

infiltration

LARYNX:

Slight focal submucosal mononuclear cell infiltration Slight focal submucosal foreign-body granuloma : due $\,$

to inspissation of plant fibres

LUNGS:

Very slight focal interstitial mononuclear cell

infiltration

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

TRACHEA, LUNG ASSOCIATED LYMPH NODES, PHARYNX (LARYNGO-)

Page: 3
Date: 9-APR-2008 Time:09:16

FRAUNHOFER INSTITUTE OF TOXICOLOGY AND EXPERIMENTAL MEDICINE Individual Animal Listing

STUDY: 02N07533

Dose Group: Clean Air Control Treatment: CleanAir Sex: Females

Animal Ref Findings

001201 Killed Necropsied on Day: 21

NO MICROSCOPIC ABNORMALITIES DETECTED IN :NASAL and PARANASAL CAVITIES, LARYNX, TRACHEA, LUNGS,

LUNG ASSOCIATED LYMPH NODES, PHARYNX (LARYNGO-)

001202 Killed Necropsied on Day: 21

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

NASAL and PARANASAL CAVITIES, LARYNX, TRACHEA, LUNGS,

LUNG ASSOCIATED LYMPH NODES, PHARYNX (LARYNGO-)

001203 Killed Necropsied on Day: 21

NASAL and PARANASAL CAVITIES:

Very slight focal submucosal inflammatory cell

infiltration

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

LARYNX, TRACHEA, LUNGS, LUNG ASSOCIATED LYMPH NODES,

PHARYNX (LARYNGO-)

001204 Killed Necropsied on Day: 21

NASAL and PARANASAL CAVITIES:

Slight multifocal submucosal inflammatory cell

infiltration

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

LARYNX, TRACHEA, LUNGS, LUNG ASSOCIATED LYMPH NODES,

PHARYNX (LARYNGO-)

001205 Killed Necropsied on Day: 21

LARYNX :

Very slight focal submucosal mononuclear cell

infiltration

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

NASAL and PARANASAL CAVITIES, TRACHEA, LUNGS, LUNG

ASSOCIATED LYMPH NODES, PHARYNX (LARYNGO-)

> Page: Date: 9-APR-2008 Time:09:16

FRAUNHOFER INSTITUTE OF TOXICOLOGY AND EXPERIMENTAL MEDICINE Individual Animal Listing

STUDY: 02N07533

Dose Group: Low Dose THC Treatment: 100mg/m3THC Sex: Males

Animal Ref Findings

002101

Killed Necropsied on Day: 14

NASAL and PARANASAL CAVITIES:

Slight focal respiratory epithelial basal-cell

hyperplasia

LARYNX :

Very slight focal submucosal mononuclear cell

infiltration

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

TRACHEA, LUNGS, LUNG ASSOCIATED LYMPH NODES, PHARYNX

(LARYNGO-)

002102 Killed Necropsied on Day: 14

NASAL and PARANASAL CAVITIES:

Very slight focal mucous (goblet) cell hyperplasia

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

LARYNX, TRACHEA, LUNGS, LUNG ASSOCIATED LYMPH NODES,

PHARYNX (LARYNGO-)

002103 Killed Necropsied on Day: 14

NASAL and PARANASAL CAVITIES:

Very slight multifocal mucous (goblet) cell

hyperplasia

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

LARYNX, TRACHEA, LUNGS, LUNG ASSOCIATED LYMPH NODES,

PHARYNX (LARYNGO-)

002104 Killed Necropsied on Day: 14

NASAL and PARANASAL CAVITIES:

Slight multifocal submucosal inflammatory cell

infiltration

Very slight focal respiratory epithelial basal-cell

hyperplasia

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

LARYNX, TRACHEA, LUNGS, LUNG ASSOCIATED LYMPH NODES,

PHARYNX (LARYNGO-)

Page: 5
Date: 9-APR-2008 Time:09:16

FRAUNHOFER INSTITUTE OF TOXICOLOGY AND EXPERIMENTAL MEDICINE Individual Animal Listing

STUDY: 02N07533

Animal Ref Findings

002105 Killed Necropsied on Day: 14

NASAL and PARANASAL CAVITIES :

Very slight multifocal respiratory epithelial

basal-cell hyperplasia

Very slight multifocal mucous (goblet) cell

hyperplasia

Very slight multifocal submucosal inflammatory cell

infiltration

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

LARYNX, TRACHEA, LUNGS, LUNG ASSOCIATED LYMPH NODES,

PHARYNX (LARYNGO-)

Page: 6
Date: 9-APR-2008 Time:09:16

FRAUNHOFER INSTITUTE OF TOXICOLOGY AND EXPERIMENTAL MEDICINE Individual Animal Listing

STUDY: 02N07533

Dose Group: Low Dose THC Treatment: 100mg/m3THC Sex: Females

Animal Ref Findings

002201 Killed Necropsied on Day: 21

NASAL and PARANASAL CAVITIES:

 $\label{eq:Very slight focal mucous (goblet) cell hyperplasia} \end{center} \begin{tabular}{ll} LARYNX : \end{tabular}$

Very slig

Very slight focal submucosal mononuclear cell

infiltration

LUNGS :

Very slight multifocal alveolar histiocytosis

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

TRACHEA, LUNG ASSOCIATED LYMPH NODES, PHARYNX (LARYNGO-)

002202 Killed Necropsied on Day: 21

NASAL and PARANASAL CAVITIES:

Very slight multifocal mucous (goblet) cell

hyperplasia

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

LARYNX, TRACHEA, LUNGS, LUNG ASSOCIATED LYMPH NODES,

PHARYNX (LARYNGO-)

002203 Killed Necropsied on Day: 21

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

NASAL and PARANASAL CAVITIES, LARYNX, TRACHEA, LUNGS,

LUNG ASSOCIATED LYMPH NODES, PHARYNX (LARYNGO-)

002204 Killed Necropsied on Day: 21

NASAL and PARANASAL CAVITIES:

Very slight focal olfactory epithelial mineralisation

LUNGS:

Very slight multifocal alveolar histiocytosis

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

LARYNX, TRACHEA, LUNG ASSOCIATED LYMPH NODES, PHARYNX

> Page: 7 Date: 9-APR-2008 Time:09:16

FRAUNHOFER INSTITUTE OF TOXICOLOGY AND EXPERIMENTAL MEDICINE Individual Animal Listing

STUDY: 02N07533

Dose Group : Low Dose THC Treatment: 100mg/m3THC Sex: Females

Findings

002205 Killed

Necropsied on Day: 21

NASAL and PARANASAL CAVITIES :

Very slight multifocal respiratory epithelial

basal-cell hyperplasia

LARYNX:

Very slight focal submucosal mononuclear cell

infiltration

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

TRACHEA, LUNGS, LUNG ASSOCIATED LYMPH NODES, PHARYNX

Page: 8
Date: 9-APR-2008 Time:09:16

FRAUNHOFER INSTITUTE OF TOXICOLOGY AND EXPERIMENTAL MEDICINE Individual Animal Listing

STUDY: 02N07533

Dose Group: Medium Dose THC Treatment: 300mg/m3THC Sex: Males

Animal Ref Findings

003101 Killed Necropsied on Day: 14

NASAL and PARANASAL CAVITIES:

Slight multifocal submucosal inflammatory cell

infiltration

Slight multifocal mucous (goblet) cell hyperplasia

LUNGS:

Very slight multifocal alveolar histiocytosis Very slight multifocal interstitial mononuclear cell

infiltration

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

LARYNX, TRACHEA, LUNG ASSOCIATED LYMPH NODES, PHARYNX

(LARYNGO-)

003102 Killed Necropsied on Day: 14

NASAL and PARANASAL CAVITIES:

Very slight multifocal mucous (goblet) cell

hyperplasia

LUNGS:

Very slight focal alveolar histiocytosis

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

LARYNX, TRACHEA, LUNG ASSOCIATED LYMPH NODES, PHARYNX

(LARYNGO-)

003103 Killed Necropsied on Day: 14

NASAL and PARANASAL CAVITIES:

Very slight multifocal submucosal inflammatory cell

infiltration

Slight multifocal mucous (goblet) cell hyperplasia

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

LARYNX, TRACHEA, LUNGS, LUNG ASSOCIATED LYMPH NODES,

PHARYNX (LARYNGO-)

Page: 9
Date: 9-APR-2008 Time:09:16

FRAUNHOFER INSTITUTE OF TOXICOLOGY AND EXPERIMENTAL MEDICINE Individual Animal Listing

STUDY: 02N07533

Dose Group: Medium Dose THC Treatment: 300mg/m3THC Sex: Males

Animal Ref Findings

003104 Killed Necropsied on Day: 14

NASAL and PARANASAL CAVITIES:

Slight multifocal submucosal inflammatory cell

infiltration

Slight multifocal mucous (goblet) cell hyperplasia Very slight focal respiratory epithelial basal-cell

hyperplasia

Very slight focal submucosal mineralisation

LARYNX :

Very slight multifocal submucosal mononuclear cell

infiltration

LUNGS:

Slight focal neuroendocrine cell hyperplasia Very slight focal interstitial mononuclear cell

infiltration

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

TRACHEA, LUNG ASSOCIATED LYMPH NODES, PHARYNX (LARYNGO-)

003105 Killed Necropsied on Day: 14

NASAL and PARANASAL CAVITIES:

Slight multifocal submucosal inflammatory cell

infiltration

Very slight multifocal mucous (goblet) cell

hyperplasia

LARYNX :

Very slight focal epithelial alteration : due to

inspissation of plant fibres

TRACHEA:

Very slight focal mucous (goblet) cell hyperplasia :

bifurcation

LUNGS :

Very slight multifocal alveolar histiocytosis Very slight focal alveolar inflammatory cell

infiltration

Very slight focal alveolar haemorrhage

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

LUNG ASSOCIATED LYMPH NODES, PHARYNX (LARYNGO-)

Page: 10
Date: 9-APR-2008 Time:09:16

FRAUNHOFER INSTITUTE OF TOXICOLOGY AND EXPERIMENTAL MEDICINE Individual Animal Listing

STUDY: 02N07533

Dose Group: Medium Dose THC Treatment: 300mg/m3THC Sex: Females

Animal Ref Findings

000001

003201 Killed Necropsied on Day: 21

NASAL and PARANASAL CAVITIES:

Very slight focal respiratory epithelial basal-cell

hyperplasia

Very slight focal mucous (goblet) cell hyperplasia

LUNGS:

Very slight multifocal alveolar histiocytosis

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

LARYNX, TRACHEA, LUNG ASSOCIATED LYMPH NODES, PHARYNX

(LARYNGO-)

003202 Killed Necropsied on Day: 21

NASAL and PARANASAL CAVITIES:

Very slight focal submucosal inflammatory cell

infiltration

Slight multifocal mucous (goblet) cell hyperplasia

LARYNX :

Very slight focal submucosal mononuclear cell

infiltration

LUNGS :

Very slight multifocal alveolar histiocytosis

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

TRACHEA, LUNG ASSOCIATED LYMPH NODES, PHARYNX (LARYNGO-)

003203 Killed Necropsied on Day: 21

NASAL and PARANASAL CAVITIES:

Slight multifocal mucous (goblet) cell hyperplasia Very slight focal submucosal inflammatory cell

infiltration

LUNGS:

Very slight focal interstitial mononuclear cell

infiltration

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

LARYNX, TRACHEA, LUNG ASSOCIATED LYMPH NODES, PHARYNX

> Page: 11 Date: 9-APR-2008 Time:09:16

FRAUNHOFER INSTITUTE OF TOXICOLOGY AND EXPERIMENTAL MEDICINE Individual Animal Listing

STUDY: 02N07533

Dose Group: Medium Dose THC Treatment: 300mg/m3THC Sex: Females

Animal Ref Findings

003204 Killed Necropsied on Day: 21

NASAL and PARANASAL CAVITIES:

Slight multifocal mucous (goblet) cell hyperplasia

LUNGS:

Very slight multifocal alveolar histiocytosis

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

LARYNX, TRACHEA, LUNG ASSOCIATED LYMPH NODES, PHARYNX

(LARYNGO-)

003205 Killed Necropsied on Day: 21

NASAL and PARANASAL CAVITIES:

Very slight multifocal submucosal inflammatory cell

infiltration

Slight multifocal mucous (goblet) cell hyperplasia

LARYNX :

Very slight focal submucosal mononuclear cell

infiltration

LUNGS:

Very slight multifocal alveolar histiocytosis

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

TRACHEA, LUNG ASSOCIATED LYMPH NODES, PHARYNX (LARYNGO-)

003206 Killed Necropsied on Day: 21

NASAL and PARANASAL CAVITIES:

Slight multifocal mucous (goblet) cell hyperplasia

LUNGS:

Very slight multifocal alveolar histiocytosis Very slight multifocal interstitial inflammatory cell

infiltration

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

LARYNX, TRACHEA, LUNG ASSOCIATED LYMPH NODES, PHARYNX

Page: 12 Date: 9-APR-2008 Time:09:16

FRAUNHOFER INSTITUTE OF TOXICOLOGY AND EXPERIMENTAL MEDICINE Individual Animal Listing

STUDY: 02N07533

Dose Group: High Dose THC Treatment: 1000mg/m3THC Sex: Males

Animal Ref Findings

004101 Killed Necropsied on Day: 14

NASAL and PARANASAL CAVITIES:

Slight multifocal submucosal inflammatory cell

infiltration

Slight multifocal mucous (goblet) cell hyperplasia

Focal submucosal cyst(s)

Very slight multifocal olfactory epithelial atrophy

LARYNX :

Very slight multifocal submucosal mononuclear cell

infiltration

Very slight focal mucous (goblet) cell hyperplasia

TRACHEA:

Very slight multifocal mucous (goblet) cell

hyperplasia

LUNGS:

Very slight multifocal alveolar inflammatory cell

infiltration

Very slight multifocal alveolar histiocytosis Slight multifocal interstitial inflammatory cell

infiltration

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

LUNG ASSOCIATED LYMPH NODES, PHARYNX (LARYNGO-)

004102 Killed Necropsied on Day: 14

NASAL and PARANASAL CAVITIES :

Moderate multifocal mucous (goblet) cell hyperplasia

TRACHEA:

Very slight multifocal mucous (goblet) cell

hyperplasia

LUNGS :

Slight multifocal alveolar inflammatory cell

infiltration

Slight multifocal alveolar histiocytosis

Very slight multifocal bronchiolo-alveolar hyperplasia Slight multifocal interstitial inflammatory cell

infiltration

LUNG ASSOCIATED LYMPH NODES:

Slight lymphoid hyperplasia

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-LARYNX, PHARYNX (LARYNGO-)

Page: 13
Date: 9-APR-2008 Time:09:16

FRAUNHOFER INSTITUTE OF TOXICOLOGY AND EXPERIMENTAL MEDICINE Individual Animal Listing

STUDY: 02N07533

Dose Group: High Dose THC Treatment: 1000mg/m3THC Sex: Males

Animal Ref Findings

004103 Killed Necropsied on Day: 14

NASAL and PARANASAL CAVITIES:

Slight multifocal mucous (goblet) cell hyperplasia

LUNGS:

Very slight multifocal alveolar inflammatory cell

infiltration

Slight multifocal alveolar histiocytosis

Very slight multifocal interstitial inflammatory cell

infiltration

Very slight focal bronchiolo-alveolar hyperplasia

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

LARYNX, TRACHEA, LUNG ASSOCIATED LYMPH NODES, PHARYNX

(LARYNGO-)

004104 Killed Necropsied on Day: 14

NASAL and PARANASAL CAVITIES:

Moderate focal submucosal inflammatory cell

infiltration

Slight multifocal mucous (goblet) cell hyperplasia

LARYNX :

Very slight multifocal submucosal mononuclear cell

infiltration

TRACHEA:

Very slight multifocal mucous (goblet) cell

hyperplasia

LUNGS:

Very slight multifocal alveolar histiocytosis Very slight multifocal interstitial mononuclear cell

infiltration

infiltration

Severe diffuse congestion

LUNG ASSOCIATED LYMPH NODES:

Slight lymphoid hyperplasia

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-PHARYNX (LARYNGO-)

Page: 14
Date: 9-APR-2008 Time:09:16

FRAUNHOFER INSTITUTE OF TOXICOLOGY AND EXPERIMENTAL MEDICINE Individual Animal Listing

STUDY: 02N07533

Animal Ref Findings

004105 Killed Necropsied on Day: 14

NASAL and PARANASAL CAVITIES:

Moderate multifocal mucous (goblet) cell hyperplasia Very slight multifocal olfactory epithelial atrophy Slight focal respiratory epithelial basal-cell

hyperplasia

Very slight multifocal submucosal inflammatory cell

infiltration

LUNGS:

Slight multifocal alveolar histiocytosis

Very slight multifocal alveolar inflammatory cell

infiltration

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

LARYNX, TRACHEA, LUNG ASSOCIATED LYMPH NODES, PHARYNX

Page: 15
Date: 9-APR-2008 Time:09:16

FRAUNHOFER INSTITUTE OF TOXICOLOGY AND EXPERIMENTAL MEDICINE Individual Animal Listing

STUDY: 02N07533

Dose Group: High Dose THC Treatment: 1000mg/m3THC Sex: Females

Animal Ref Findings

004201 Killed Necropsied on Day: 21

NASAL and PARANASAL CAVITIES:

Very slight multifocal olfactory epithelial basal-cell

hyperplasia

Slight multifocal mucous (goblet) cell hyperplasia

LARYNX :

Slight focal submucosal mononuclear cell infiltration

LUNGS :

Slight multifocal alveolar histiocytosis Slight multifocal alveolar inflammatory cell

infiltration

Very slight multifocal bronchiolo-alveolar hyperplasia Slight multifocal interstitial inflammatory cell

infiltration

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

TRACHEA, LUNG ASSOCIATED LYMPH NODES, PHARYNX (LARYNGO-)

004202 Killed Necropsied on Day: 21

NASAL and PARANASAL CAVITIES:

Very slight multifocal olfactory epithelial atrophy

Moderate multifocal mucous (goblet) cell hyperplasia

TRACHEA:

Very slight multifocal mucous (goblet) cell

hyperplasia

LUNGS:

Slight multifocal alveolar histiocytosis

Very slight multifocal alveolar inflammatory cell

infiltration

Very slight multifocal bronchiolo-alveolar hyperplasia

 $\label{lem:very_slight} \mbox{ Very slight focal interstitial fibrosis }$

Slight multifocal interstitial inflammatory cell

infiltration

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

LARYNX, LUNG ASSOCIATED LYMPH NODES, PHARYNX (LARYNGO-)

004203 Killed Necropsied on Day: 21

NASAL and PARANASAL CAVITIES:

Slight multifocal mucous (goblet) cell hyperplasia

TRACHEA:

Very slight multifocal mucous (goblet) cell

hyperplasia

004203 Continued on the next page

Page: 16
Date: 9-APR-2008 Time:09:16

FRAUNHOFER INSTITUTE OF TOXICOLOGY AND EXPERIMENTAL MEDICINE Individual Animal Listing

STUDY: 02N07533

Dose Group: High Dose THC Treatment: 1000mg/m3THC Sex: Females

Animal Ref Findings

004203 Continued from previous page

LUNGS:

Slight multifocal alveolar histiocytosis

Very slight multifocal alveolar inflammatory cell

infiltration

Very slight multifocal interstitial mononuclear cell

infiltration

Very slight multifocal bronchiolo-alveolar hyperplasia

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

LARYNX, LUNG ASSOCIATED LYMPH NODES, PHARYNX (LARYNGO-)

004204 Killed Necropsied on Day: 21

NASAL and PARANASAL CAVITIES:

Moderate multifocal mucous (goblet) cell hyperplasia Very slight multifocal submucosal inflammatory cell

infiltration

LUNGS:

Very slight multifocal alveolar inflammatory cell

infiltration

Very slight multifocal alveolar histiocytosis Very slight multifocal interstitial mononuclear cell infiltration

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

LARYNX, TRACHEA, LUNG ASSOCIATED LYMPH NODES, PHARYNX

(LARYNGO-)

004205 Killed Necropsied on Day: 21

NASAL and PARANASAL CAVITIES:

Very slight multifocal olfactory epithelial atrophy Moderate multifocal mucous (goblet) cell hyperplasia Very slight multifocal submucosal inflammatory cell

infiltration

LUNGS :

Slight multifocal alveolar inflammatory cell

infiltration

Slight multifocal alveolar histiocytosis

Very slight multifocal bronchiolo-alveolar hyperplasia Slight multifocal interstitial inflammatory cell

infiltration

004205 Continued on the next page \dots

Page: 17
Date: 9-APR-2008 Time:09:16

FRAUNHOFER INSTITUTE OF TOXICOLOGY AND EXPERIMENTAL MEDICINE Individual Animal Listing

STUDY: 02N07533

Dose Group: High Dose THC Treatment: 1000mg/m3THC Sex: Females

Animal Ref Findings

004205 Continued from previous page

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

LARYNX, TRACHEA, LUNG ASSOCIATED LYMPH NODES, PHARYNX

(LARYNGO-)

004206 Killed Necropsied on Day: 21

NASAL and PARANASAL CAVITIES :

Slight multifocal mucous (goblet) cell hyperplasia Very slight multifocal olfactory epithelial atrophy Very slight focal olfactory epithelial mineralisation

LARYNX :

Very slight focal submucosal mononuclear cell

infiltration

LUNGS:

Very slight multifocal alveolar inflammatory cell

infiltration

Slight multifocal alveolar histiocytosis

Very slight multifocal interstitial mononuclear cell

infiltration

NO MICROSCOPIC ABNORMALITIES DETECTED IN :-

TRACHEA, LUNG ASSOCIATED LYMPH NODES, PHARYNX (LARYNGO-)

unhofer ITEM Final Report 02N07533 page 123 of 126
Range Finding Testing for a Combined Repeated Dose Toxicity Study with the Reproduction/ Developmental Toxicity Screening Test and Mammalian Erythrocyte Micronucleus Test via Inhalation with Roofing Asphalt Fume Condensate

Appendix K

Blood Formation Individual Data

Blood Formation

Study No: 02N07533

Negative Control: Clean Air

Bone Marrow Preparation: 24 hours from beginning of last exposure

Sex	Animal No.	PCE / 400 RBC	NCE / 400 RBC	PCE : NCE
Males	1101	116	284	0.41
	1102	134	266	0.50
	1103	133	267	0.50
	1104	135	265	0.51
	1105	148	252	0.59
	Mean ± SD	133 ± 11.4	267 ± 11.4	0.50 ± 0.063
Females	1201	134	266	0.50
	1202	134	266	0.50
	1203	141	259	0.54
	1204	138	262	0.53
	1205	163	237	0.69
	Mean ± SD	142 ± 12.1	258 ± 12.1	0.55 ± 0.077

PCE: Polychromatic Erythrocytes Normochromatic Erythrocytes NCE:

Red Blood Cells RBC: Micronuclei MN:

Standard Deviation SD:

Blood Formation

02N07533 **Study No:**

Roofing Asphalt Fume Condensate: 300 mg/m³

Bone Marrow Preparation: 24 hours from beginning of last exposure

Sex	Animal No.	PCE / 400 RBC	NCE / 400 RBC	PCE : NCE
Females	3203	144	256	0.56
	3204	160	240	0.67
	3205	108	292	0.37
	3206	127	273	0,47
	Mean ± SD	135 ± 22.4	265 ± 22.4	0.52 ± 0.128

Polychromatic Erythrocytes Normochromatic Erythrocytes PCE: NCE:

Red Blood Cells RBC: MN: Micronuclei

Standard Deviation SD:

Blood Formation

Study No: 02N07533

1000 mg/m³ **Roofing Asphalt Fume Condensate:**

Bone Marrow Preparation: 24 hours after last exposure

Sex	Animal No.	PCE / 400 RBC	NCE / 400 RBC	PCE : NCE
Males	4101	140	260	0.54
	4102	105	295	0.36
	4103	124	276	0.45
	4104	118	282	0.42
	4105	113	287	0.39
	Mean ± SD	120 ± 13.2	280 ± 13.2	0.43 ± 0.069
Females	4201	92	308	0.30
	4202	130	270	0.48
	4203	96	304	0.32
	4204	104	296	0.35
	4205	127	273	0.47
	4206ª	273	127	2.15
	Mean ± SD	110 ± 17.6**	290 ± 17.6**	0.38 ± 0.085**

Polychromatic Erythrocytes PCE: Normochromatic Erythrocytes NCE:

RBC: **Red Blood Cells** MN: Micronuclei **Standard Deviation** SD:

**:

This additional animal was excluded from statistical analysis due to an abnormally high number of PCE.